切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (02) : 168 -172. doi: 10.3877/cma.j.issn.1674-6902.2017.02.011

所属专题: 文献

论著

基因芯片筛选Sirt1在小鼠急性呼吸窘迫综合征炎症损伤中相互作用的基因
刘俊彦1, 吕学军1, 赵维1, 胡明冬1, 李玉英1,(), 王关嵩1, 徐剑诚1, 钱桂生1   
  1. 1. 400037 重庆,第三军医大学新桥医院呼吸内科
  • 收稿日期:2017-02-08 出版日期:2017-04-20
  • 通信作者: 李玉英
  • 基金资助:
    国家自然科学基金面上项目(30770950)

Screening of genes interacting with Sirt1 in inflammatory injury of acute respiratory distress syndrome in mice by gene chip

Junyan Liu1, Xuejun Lyu1, Wei Zhao1, Mingdong Hu1, Yuying Li1,(), Guansong Wang1, Jiancheng Xu1, Guisheng Qian1   

  1. 1. Department of respiratory medicine, XinQiao Hospital, the Third Military Medical University, Chongqing 400037, China
  • Received:2017-02-08 Published:2017-04-20
  • Corresponding author: Yuying Li
  • About author:
    Corresponding author: Li Yuying, Email:
引用本文:

刘俊彦, 吕学军, 赵维, 胡明冬, 李玉英, 王关嵩, 徐剑诚, 钱桂生. 基因芯片筛选Sirt1在小鼠急性呼吸窘迫综合征炎症损伤中相互作用的基因[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 168-172.

Junyan Liu, Xuejun Lyu, Wei Zhao, Mingdong Hu, Yuying Li, Guansong Wang, Jiancheng Xu, Guisheng Qian. Screening of genes interacting with Sirt1 in inflammatory injury of acute respiratory distress syndrome in mice by gene chip[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(02): 168-172.

目的

筛选小鼠急性呼吸窘迫综合征炎症损伤中与Sirt1相互作用的基因,探讨Sirt1在急性呼吸窘迫综合征炎症反应中的作用机制。

方法

购买Sirt1过表达(Tg)小鼠和野生型(WT)小鼠,饲养、繁殖、鉴定新生小鼠基因型;Western Blot鉴定小鼠肺组织Sirt1表达差异;建立ARDS小鼠模型,观察ARDS小鼠肺组织HE染色病理变化,并采用ELISA检测两种ARDS小鼠肺组织IL-6表达差异;采用基因芯片筛选Sirt1在小鼠ARDS炎症损伤中相互作用的基因。

结果

通过聚合酶链反应鉴定出Tg和WT两种不同基因型的小鼠;免疫印迹法检测小鼠肺组织Sirt1的表达差异结果提示Tg小鼠肺组织Sirt1含量显著高于WT小鼠(P=0.001);不同浓度LPS腹腔注射12 h后小鼠肺组织HE染色病理变化提示随着LPS用量增加,两种小鼠肺组织损伤程度明显增加,且WT-ARDS小鼠的肺组织损伤程度比Tg-ARDS小鼠更为严重;当LPS用量达到20 mg/kg时两组小鼠存活率<50%;两种小鼠腹腔注射LPS(15 mg/kg)后,肺组织IL-6的表达随时间推移逐渐呈现逐渐增高的趋势,在3,6,12,24 h WT-ARDS组肺组织IL-6表达浓度显著高于Tg-ARDS组(P<0.05),尤其在12 h差异最为显著(P=0.007)。基因芯片筛选出在小鼠ARDS炎症损伤中与Sirt1相互作用的基因有Ubd,Ube2d2b,Olfm4,Il1rl1,Hivep3和Lpar1。

结论

Sirt1可能通过调控Ubd,Ube2d2b,Olfm4,Il1rl1,Hivep3和Lpar1的表达减轻ARDS小鼠的炎症损伤。

Objective

To Screen of Sirt1 interacting genes in acute respiratory distress syndrome in mice by gene chip, and to provide a reference for exploring the mechanism of action of Sirt1 in acute respiratory distress syndrome.

Methods

Sirt1 overexpression (Tg) mice and wild type (WT) mice were bought for research, and the genotypes of newborn mice were identified after reproduction. The Sirt1 expression differences in lung tissue of Tg mice and WT mice were test by Western Blot. Construction of ARDS mouse model, the expression of IL-6 in lung tissue of two ARDS mice was detected by ELISA, and pathological changes in lung tissue of ARDS mice by HE staining were observed. Screening of Sirt1 interacting genes in acute respiratory distress syndrome in mice by gene chip.

Results

Two different genotypes of Tg and WT were identified by polymerase chain reaction (PCR). The expression of Sirt1 in lung tissue of mice which detecting by Western blot suggested that the Sirt1 in lung tissue of Tg mice was significantly higher than that of WT mice (P=0.001). Pathological changes of lung tissue of mice after intraperitoneal injection of LPS after LPS via HE staining prompted that with the increase of LPS dosage, the injury degree of lung tissue of two kinds of mice increased obviously, and the degree of lung injury in WT-ARDS mice was more serious than that of Tg-ARDS mice, and when the dosage of LPS reached 20 mg/kg, the survival rate of the two groups was <50%. Two kind of mice were injected intraperitoneally with LPS (15 mg/kg), The expression of IL-6 in lung tissue gradually increased with the passage of time, The expression of IL-6 in lung tissue of 3 h, 6 h, 12 h, 24 h inWT-ARDS group was significantly higher than that in Tg-ARDS group(P<0.05), morever, the difference was the most significant especially in 12 h(P=0.007). Ubd, Ube2d2b, Olfm4, Il1rl1, Hivep3 and Lpar1 were identified as genes that interact with Sirt1 in mouse ARDS inflammatory lesions by gene chip screening.

Conclusion

Sirt1 may reduce the inflammatory damage in ARDS mice by regulating the expression of Ubd, Ube2d2b, Olfm4, Il1rl1, Hivep3 and Lpar1.

图1 小鼠基因鉴定
图2 小鼠肺组织Sirt1表达
图3 不同浓度LPS腹腔注射12 h后小鼠肺组织以病理变化(HE×20)
图4 两种ARDS小鼠肺组织IL-6表达变化
表1 小鼠ARDS炎症损伤中与Sirt1相互作用的基因
1
Lee JH, Moon JH, Lee YJ, et al. SIRT1, a Class Ⅲ histone deacetylase,regulates LPS-induced inflammation in human keratinocytes and mediates the anti-inflammatory effects of hinokitiol[J]. J Invest Dermatol, 2017, pii: S0022-202X(17)31149-1.
2
Liang L, Liu X, Wang Q, et al. Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3,5,4′-tri-O-acetylresveratrol in rats Phytomedicine[J]. Phytomedicine, 2013, 20(6): 558-563.
3
Ma L, Zhao Y, Wang R, et al. 3,5,4′-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway[J]. Mediators Inflamm, 2015, 2015: 143074.
4
Guo L, Li S, Zhao Y, et al. Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung Injury via regulating SIRT1 /NF-κB pathway[J]. J Cell Physiol, 2015, 230(10): 2390-2402.
5
金发光. 急性肺损伤的诊治研究现状及进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 1-3.
6
宋旸,蒋昊翔,张永红,等. 急性呼吸窘迫综合征药物研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 8(6): 769-772.
7
冯林. 1.从人胚胎肺发育研究人原发性肺腺癌预后相关基因表达谱,2.深测序和基因芯片技术用于mRNA表达谱检测的比较研究[D]. 中国协和医科大学,2010.
8
王婧超. 6-姜烯酚通过NF-κB途径对脂多糖诱导的急性肺损伤小鼠的保护作用机制研究[D]. 南方医科大学,2016.
9
Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury[J]. J Appl Physiol (1985), 2004, 97(5): 1605-1617.
10
Meng X, Tan J, Li M, et al. Sirt1: Role under the condition of ischemia/hypoxia[J]. Cell Mol Neurobiol, 2017, 37(1): 17-28.
11
Lucchi NW, Moore JM. LPS induces secretion of chemokines by human syncytiotrophoblast cells in a MAPK-dependent manner[J]. J Reprod Immunol, 2007, 73(1): 20-27.
12
Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proc Natl Acad Sci U S A, 2008, 105(28): 9793-9798.
13
曲景灏,张绍丹,孙曹毓,等. 胡黄连苷Ⅱ在脂多糖诱导大鼠葡萄膜炎模型中抗炎作用[J]. 中国实用眼科杂志,2015, 33(4): 431-435.
14
Nguyen NT, Now H, Kim WJ, et al. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform[J]. Sci Rep, 2016, 6: 23377.
15
Canaan A, Yu X, Booth CJ, et al. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences[J]. Mol Cell Biol, 2006, 26(13): 5180-5189.
16
Liu W, Yan M, Liu Y, et al. Olfactomedin 4 down-regulates innate immunity against helicobacter pylori infection[J]. Proc Natl Acad Sci U S A, 2010, 107(24): 11056-11061.
17
Hayakawa H, Hayakawa M, Kume A, et al. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation[J]. J Biol Chem, 2007, 282(36): 26369-26380.
18
Chin KL, Aerbajinai W, Zhu J, et al. The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor [J]. Br J Haematol, 2008, 143(3): 421-432.
19
Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation[J]. J Immunol, 2009, 183(10): 6469-6477.
20
Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells[J]. Proc Natl Acad Sci U S A, 2005, 102(14): 5138-5143.
21
Allen CE, Mak CH, Wu LC. The kappa B transcriptional enhancer motif and signal sequences of V(D)J recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study[J]. BMC Immunol, 2002, 3: 10.
22
Zhao J, He D, Su Y, et al. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(4): L547-556.
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[3] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[4] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[5] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[6] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[7] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[10] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[11] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[12] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[13] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要