切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2017, Vol. 10 ›› Issue (02) : 168 -172. doi: 10.3877/cma.j.issn.1674-6902.2017.02.011

所属专题: 文献

论著

基因芯片筛选Sirt1在小鼠急性呼吸窘迫综合征炎症损伤中相互作用的基因
刘俊彦1, 吕学军1, 赵维1, 胡明冬1, 李玉英1,(), 王关嵩1, 徐剑诚1, 钱桂生1   
  1. 1. 400037 重庆,第三军医大学新桥医院呼吸内科
  • 收稿日期:2017-02-08 出版日期:2017-04-20
  • 通信作者: 李玉英
  • 基金资助:
    国家自然科学基金面上项目(30770950)

Screening of genes interacting with Sirt1 in inflammatory injury of acute respiratory distress syndrome in mice by gene chip

Junyan Liu1, Xuejun Lyu1, Wei Zhao1, Mingdong Hu1, Yuying Li1,(), Guansong Wang1, Jiancheng Xu1, Guisheng Qian1   

  1. 1. Department of respiratory medicine, XinQiao Hospital, the Third Military Medical University, Chongqing 400037, China
  • Received:2017-02-08 Published:2017-04-20
  • Corresponding author: Yuying Li
  • About author:
    Corresponding author: Li Yuying, Email:
引用本文:

刘俊彦, 吕学军, 赵维, 胡明冬, 李玉英, 王关嵩, 徐剑诚, 钱桂生. 基因芯片筛选Sirt1在小鼠急性呼吸窘迫综合征炎症损伤中相互作用的基因[J]. 中华肺部疾病杂志(电子版), 2017, 10(02): 168-172.

Junyan Liu, Xuejun Lyu, Wei Zhao, Mingdong Hu, Yuying Li, Guansong Wang, Jiancheng Xu, Guisheng Qian. Screening of genes interacting with Sirt1 in inflammatory injury of acute respiratory distress syndrome in mice by gene chip[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2017, 10(02): 168-172.

目的

筛选小鼠急性呼吸窘迫综合征炎症损伤中与Sirt1相互作用的基因,探讨Sirt1在急性呼吸窘迫综合征炎症反应中的作用机制。

方法

购买Sirt1过表达(Tg)小鼠和野生型(WT)小鼠,饲养、繁殖、鉴定新生小鼠基因型;Western Blot鉴定小鼠肺组织Sirt1表达差异;建立ARDS小鼠模型,观察ARDS小鼠肺组织HE染色病理变化,并采用ELISA检测两种ARDS小鼠肺组织IL-6表达差异;采用基因芯片筛选Sirt1在小鼠ARDS炎症损伤中相互作用的基因。

结果

通过聚合酶链反应鉴定出Tg和WT两种不同基因型的小鼠;免疫印迹法检测小鼠肺组织Sirt1的表达差异结果提示Tg小鼠肺组织Sirt1含量显著高于WT小鼠(P=0.001);不同浓度LPS腹腔注射12 h后小鼠肺组织HE染色病理变化提示随着LPS用量增加,两种小鼠肺组织损伤程度明显增加,且WT-ARDS小鼠的肺组织损伤程度比Tg-ARDS小鼠更为严重;当LPS用量达到20 mg/kg时两组小鼠存活率<50%;两种小鼠腹腔注射LPS(15 mg/kg)后,肺组织IL-6的表达随时间推移逐渐呈现逐渐增高的趋势,在3,6,12,24 h WT-ARDS组肺组织IL-6表达浓度显著高于Tg-ARDS组(P<0.05),尤其在12 h差异最为显著(P=0.007)。基因芯片筛选出在小鼠ARDS炎症损伤中与Sirt1相互作用的基因有Ubd,Ube2d2b,Olfm4,Il1rl1,Hivep3和Lpar1。

结论

Sirt1可能通过调控Ubd,Ube2d2b,Olfm4,Il1rl1,Hivep3和Lpar1的表达减轻ARDS小鼠的炎症损伤。

Objective

To Screen of Sirt1 interacting genes in acute respiratory distress syndrome in mice by gene chip, and to provide a reference for exploring the mechanism of action of Sirt1 in acute respiratory distress syndrome.

Methods

Sirt1 overexpression (Tg) mice and wild type (WT) mice were bought for research, and the genotypes of newborn mice were identified after reproduction. The Sirt1 expression differences in lung tissue of Tg mice and WT mice were test by Western Blot. Construction of ARDS mouse model, the expression of IL-6 in lung tissue of two ARDS mice was detected by ELISA, and pathological changes in lung tissue of ARDS mice by HE staining were observed. Screening of Sirt1 interacting genes in acute respiratory distress syndrome in mice by gene chip.

Results

Two different genotypes of Tg and WT were identified by polymerase chain reaction (PCR). The expression of Sirt1 in lung tissue of mice which detecting by Western blot suggested that the Sirt1 in lung tissue of Tg mice was significantly higher than that of WT mice (P=0.001). Pathological changes of lung tissue of mice after intraperitoneal injection of LPS after LPS via HE staining prompted that with the increase of LPS dosage, the injury degree of lung tissue of two kinds of mice increased obviously, and the degree of lung injury in WT-ARDS mice was more serious than that of Tg-ARDS mice, and when the dosage of LPS reached 20 mg/kg, the survival rate of the two groups was <50%. Two kind of mice were injected intraperitoneally with LPS (15 mg/kg), The expression of IL-6 in lung tissue gradually increased with the passage of time, The expression of IL-6 in lung tissue of 3 h, 6 h, 12 h, 24 h inWT-ARDS group was significantly higher than that in Tg-ARDS group(P<0.05), morever, the difference was the most significant especially in 12 h(P=0.007). Ubd, Ube2d2b, Olfm4, Il1rl1, Hivep3 and Lpar1 were identified as genes that interact with Sirt1 in mouse ARDS inflammatory lesions by gene chip screening.

Conclusion

Sirt1 may reduce the inflammatory damage in ARDS mice by regulating the expression of Ubd, Ube2d2b, Olfm4, Il1rl1, Hivep3 and Lpar1.

图1 小鼠基因鉴定
图2 小鼠肺组织Sirt1表达
图3 不同浓度LPS腹腔注射12 h后小鼠肺组织以病理变化(HE×20)
图4 两种ARDS小鼠肺组织IL-6表达变化
表1 小鼠ARDS炎症损伤中与Sirt1相互作用的基因
1
Lee JH, Moon JH, Lee YJ, et al. SIRT1, a Class Ⅲ histone deacetylase,regulates LPS-induced inflammation in human keratinocytes and mediates the anti-inflammatory effects of hinokitiol[J]. J Invest Dermatol, 2017, pii: S0022-202X(17)31149-1.
2
Liang L, Liu X, Wang Q, et al. Pharmacokinetics, tissue distribution and excretion study of resveratrol and its prodrug 3,5,4′-tri-O-acetylresveratrol in rats Phytomedicine[J]. Phytomedicine, 2013, 20(6): 558-563.
3
Ma L, Zhao Y, Wang R, et al. 3,5,4′-Tri-O-acetylresveratrol attenuates lipopolysaccharide-induced acute respiratory distress syndrome via MAPK/SIRT1 pathway[J]. Mediators Inflamm, 2015, 2015: 143074.
4
Guo L, Li S, Zhao Y, et al. Silencing angiopoietin-like protein 4 (ANGPTL4) protects against lipopolysaccharide-induced acute lung Injury via regulating SIRT1 /NF-κB pathway[J]. J Cell Physiol, 2015, 230(10): 2390-2402.
5
金发光. 急性肺损伤的诊治研究现状及进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 1-3.
6
宋旸,蒋昊翔,张永红,等. 急性呼吸窘迫综合征药物研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2015, 8(6): 769-772.
7
冯林. 1.从人胚胎肺发育研究人原发性肺腺癌预后相关基因表达谱,2.深测序和基因芯片技术用于mRNA表达谱检测的比较研究[D]. 中国协和医科大学,2010.
8
王婧超. 6-姜烯酚通过NF-κB途径对脂多糖诱导的急性肺损伤小鼠的保护作用机制研究[D]. 南方医科大学,2016.
9
Mura M, dos Santos CC, Stewart D, et al. Vascular endothelial growth factor and related molecules in acute lung injury[J]. J Appl Physiol (1985), 2004, 97(5): 1605-1617.
10
Meng X, Tan J, Li M, et al. Sirt1: Role under the condition of ischemia/hypoxia[J]. Cell Mol Neurobiol, 2017, 37(1): 17-28.
11
Lucchi NW, Moore JM. LPS induces secretion of chemokines by human syncytiotrophoblast cells in a MAPK-dependent manner[J]. J Reprod Immunol, 2007, 73(1): 20-27.
12
Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage[J]. Proc Natl Acad Sci U S A, 2008, 105(28): 9793-9798.
13
曲景灏,张绍丹,孙曹毓,等. 胡黄连苷Ⅱ在脂多糖诱导大鼠葡萄膜炎模型中抗炎作用[J]. 中国实用眼科杂志,2015, 33(4): 431-435.
14
Nguyen NT, Now H, Kim WJ, et al. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform[J]. Sci Rep, 2016, 6: 23377.
15
Canaan A, Yu X, Booth CJ, et al. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences[J]. Mol Cell Biol, 2006, 26(13): 5180-5189.
16
Liu W, Yan M, Liu Y, et al. Olfactomedin 4 down-regulates innate immunity against helicobacter pylori infection[J]. Proc Natl Acad Sci U S A, 2010, 107(24): 11056-11061.
17
Hayakawa H, Hayakawa M, Kume A, et al. Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation[J]. J Biol Chem, 2007, 282(36): 26369-26380.
18
Chin KL, Aerbajinai W, Zhu J, et al. The regulation of OLFM4 expression in myeloid precursor cells relies on NF-kappaB transcription factor [J]. Br J Haematol, 2008, 143(3): 421-432.
19
Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation[J]. J Immunol, 2009, 183(10): 6469-6477.
20
Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells[J]. Proc Natl Acad Sci U S A, 2005, 102(14): 5138-5143.
21
Allen CE, Mak CH, Wu LC. The kappa B transcriptional enhancer motif and signal sequences of V(D)J recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study[J]. BMC Immunol, 2002, 3: 10.
22
Zhao J, He D, Su Y, et al. Lysophosphatidic acid receptor 1 modulates lipopolysaccharide-induced inflammation in alveolar epithelial cells and murine lungs[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 301(4): L547-556.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[3] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[4] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[5] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[6] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 崔刚, 王德亮, 付茂武, 田璧铭, 王莹, 段虎斌. 创伤性脑损伤后鼠脑内RHO/ROCK信号通路与神经炎症反应及病理性损伤关系的研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 324-328.
[9] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[10] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[11] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[12] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[13] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[14] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[15] 史静, 郝晨曦, 何苗, 李伟荣. 昼夜节律与沉默信息调节因子1在缺血性脑卒中神经保护中的相互作用研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(02): 154-158.
阅读次数
全文


摘要