切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (02) : 146 -150. doi: 10.3877/cma.j.issn.1674-6902.2019.02.003

所属专题: 专题评论 文献

论著

STOP-Bang问卷联合改良的Mallampati评分在预测阻塞性睡眠呼吸暂停中的临床价值
马长秀1, 刘九玉1, 张颖1   
  1. 1. 230601 合肥,安徽医科大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2018-12-16 出版日期:2019-04-20
  • 基金资助:
    国家自然科学基金资助项目(81670060)

Clinical value of STOP-Bang questionnaire and modified mallampati score in predicting obstructive sleep apnea

Changxiu Ma1, Jiuyu Liu1, Ying Zhang1   

  1. 1. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
  • Received:2018-12-16 Published:2019-04-20
引用本文:

马长秀, 刘九玉, 张颖. STOP-Bang问卷联合改良的Mallampati评分在预测阻塞性睡眠呼吸暂停中的临床价值[J]. 中华肺部疾病杂志(电子版), 2019, 12(02): 146-150.

Changxiu Ma, Jiuyu Liu, Ying Zhang. Clinical value of STOP-Bang questionnaire and modified mallampati score in predicting obstructive sleep apnea[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(02): 146-150.

目的

探讨STOP-Bang问卷(SBQ)联合改良的Mallampati评分(MM)在预测阻塞性睡眠呼吸暂停(OSA)中的作用。

方法

选择就诊于安徽医科大学第二附属医院呼吸睡眠中心的患者40例,完善SBQ及MM,并于入住当晚行多导睡眠监测(PSG),按呼吸暂停低通气指数(AHI)分为>5次/h、>15次/h、>30次/h三组,根据结果分别计算SBQ≥3分、MM≥Ⅲ级以及SBQ≥3分联合MM≥Ⅲ级预测OSA的灵敏度、特异度、阳性预测值、阴性预测值。

结果

该研究共筛查患者44例,纳入合格受试者40例,其中男性34例(85%),女性6例(15%),年龄(45.1±14.6)岁,颈围(43.5±5.9)cm,体质量指数(BMI)28.87(26.35~32.13)kg/m2,AHI 50.6(16.22~70.98)次/h,未患OSA 3例(7.5%),轻度OSA 1例(2.5%),中度OSA 6例(15%),重度OSA 30例(75%)。SBQ≥3分预测OSA的灵敏度最高(分别为91.89%、91.67%、93.33%),但特异度最低(分别为33.33%、25.00%、20.00%)。MM≥Ⅲ级预测OSA的灵敏度为78.39%、80.56%、83.33%,特异度为33.33%、50%、40%。SBQ≥3分或MM≥Ⅲ级预测OSA的灵敏度均较高,但特异度均不理想。两者联合预测OSA的特异度显著提高(66.67%、75.00%、50.00%),而灵敏度仅稍降低(75.68%、77.78%、80.00%),其中,只有中重度OSA (AHI>15次/h)通过了与PSG的Kappa一致性检验(P<0.05)。

结论

将就诊于睡眠中心的患者进行SBQ及MM评分,SBQ≥3分联合MM≥Ⅲ级可显著提高预测OSA的特异度,同时具有良好的灵敏度,尤其对中重度OSA的预测与PSG具有较好的一致性,可用于OSA的筛查。

Objective

To assess the clinical value of STOP-Bang questionnaire (SBQ) and modified mallampati score (MM) in predicting obstructive sleep apnea (OSA).

Methods

A total of 40 cases (6 females and 34 males) hospitalized in the Respiratory Sleep Center of our hospital were enrolled in this study. All the patients were prospectively predicted for risk of OSA using SBQ and MM, and their sleep quality was monitored by polysomnography (PSG). According to the apnea-hypopnea index (AHI), the patients were divided into three groups: AHI>5/h group, AHI>15/h group, and AHI>30/h group. Then all the patients received SBQ and MM assessment. Finally, we calculated the sensitivity, specificity, positive predictive values and negative predictive values for all the patients of both scores separately and in combination.

Results

In this study, 44 patients were screened and 40 eligible subjects were included, including 34 males (85%) and 6 females (15%). Their average age was (45.1±14.6) years, their average neck circumference was (43.5±5.9)cm, their average body mass index (BMI) was 28.87 (26.35-32.13) kg/m2, and their average AHI was 50.6 (16.22-70.98)/h. No OSA was found in 3 cases (7.5%), mild OSA in 1 case (2.5%), moderate OSA in 6 cases (15%) and severe OSA in 30 cases (75%). The results showed that SBQ≥3 had higher sensitivities (91.89%, 91.67%, and 93.33%, respectively) in predicting OSA, but lower specificities (33.33%, 25.00%, and 20.00%, respectively) were found. The sensitivities of MM≥Ⅲ in predicting OSA were 78.39%, 80.56%, 83.33%, respectively, and the specificities were 33.33%, 50%, 40%, respectively. The sensitivity of SBQ≥3 or MM≥Ⅲ in predicting OSA was higher, but the specificity was not ideal. The specificities (66.67%, 75.00%, and 50.00%, respectively) in predicting OSA were significantly improved by the combination of the two methods, and the sensitivities (75.68%, 77.78%, and 80.00%, respectively) were only slightly reduced. Among them, only moderate and severe OSA (AHI>15/h) passed the Kappa consistency test with PSG (P<0.05).

Conclusion

The combination of SBQ≥3 and MM≥Ⅲ for the patients treated in our sleep center can significantly improve the specificity in predicting OSA and at the same time has good sensitivity, especially for the patients with moderate or severe OSA. It has good consistency with PSG, therefore, it can be used for OSA screening.

图1 MM评价方法;注:MM:改良的Mallampati评分;Ⅰ级,可见软腭、悬雍垂、咽腭弓;Ⅱ级,可见软腭、咽腭弓,悬雍垂部分可见;Ⅲ级,仅见软腭;Ⅳ级,仅见硬腭
表1 SBQ、MM和SBQ+MM对OSA的预测价值
表2 SBQ、MM和SBQ+MM与PSG的Kappa检验
1
Garbarino S. Obstructive sleep apnea (OSA) and driving safety[J]. Med Lav, 2017, 108(4):297-303.
2
中国医师协会睡眠医学专业委员会. 成人阻塞性睡眠呼吸暂停多学科诊疗指南[J]. 中华医学杂志,2018, 98(24):1902-1914.
3
Huang TY, Lin BM, Stampfer MJ, et al. A population-based study of the bidirectional association between obstructive sleep apnea and type 2 diabetes in three prospective U.S. cohorts[J]. Diabetes Care, 2018, 41(10):2111-2119.
4
Dong R, Dong Z, Liu H, et al. Prevalence, risk factors, outcomes, and treatment of obstructive sleep apnea in patients with cerebrovascular disease: a systematic review[J]. J Stroke Cerebrovasc Dis, 2018, 27(6):1471-1480.
5
Gaspar LS, Alvaro AR, Moita J, et al. Obstructive sleep apnea and hallmarks of aging[J]. Trends Mol Med, 2017, 23(8):675-692.
6
Lal C, Dibartolo MM, Kumbhare S, et al. Impact of obstructive sleep apnea syndrome on cognition in early postmenopausal women[J]. Sleep Breath, 2016, 20(2):621-626.
7
Chung F, Yegneswaran B, Liao P, et al. STOP-questionnaire: a tool to screen patients for obstructive sleep apnea[J]. Anesthesiology, 2008, 108(5):812-821.
8
Teng Y, Wang S, Wang N, et al. STOP-Bang questionnaire screening for obstructive sleep apnea among Chinese patients with type 2 diabetes mellitus[J]. Arch Med Sci, 2018, 14(5):971-978.
9
Garza-Garibay C, Espinosa-Galindo AM, Rios DP. Use of the Stop-bang questionnaire for the population determination of obstructive sleep apnea in surgical patients[J]. Med Univer, 2017, 19(77):154-158.
10
Nuckton TJ, Glidden DV, Browner SW, et al. Physical examination:Mallampati score as an independent predictor of obstructive sleep apnea[J]. Sleep, 2006, 29(7):903-908.
11
Abumuamar AM, Dorian P, Newman D, et al. The STOP-Bang questionnaire shows an insufficient specificity for detecting obstructive sleep apnea in patients with atrial fibrillation[J]. J Sleep Res, 2018, 27(6):e12702.
12
Kunisaki KM, Brown KE, Fabbrini AE, et al. STOP-Bang questionnaire performance in a Veterans Affairs unattended sleep study program[J]. Ann Am Thorac Soc, 2014, 11(2):192-197.
13
Mallampati SR, Gatt SP, Gugino LD, et al. A clinical sign to predict difficult tracheal intubation: a prospective study[J]. Can Anaesth Soc J, 1985, 32(4):429-434.
14
Xie C, Zhu R, Tian Y, et al. Association of obstructive sleep apnoea with the risk of vascular outcomes and all-cause mortality: a meta-analysis[J]. BMJ Open, 2017, 7(12):e013983.
15
Whyte A, Gibson D. Imaging of adult obstructive sleep apnoea[J]. Eur J Radiol, 2018, 102:176-187.
16
McEvoy RD, Antic NA, Heeley E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea[J]. N Engl J Med, 2016, 375(10):919-931.
17
Mokhlesi B, Ayas NT. Cardiovascular events in obstructive sleep apnea-Can CPAP save lives[J]. N Engl J Med, 2016, 375(10):994-996.
18
Lin MT, Lai CL, Lee PL, et al. Timely diagnosis and treatment of sleep apnea reduce cardiovascular sequelae in patients with myocardial infarction[J]. PloS One, 2018, 13(7):e0201493.
19
Nicholl DDM, Hanly PJ, Zalucky AA, et al. CPAP therapy delays cardiovagal reactivation and decreases arterial renin-angiotensin system activity in humans with obstructive sleep apnea[J]. J Clin Sleep Med, 2018, 14(9):1509-1520.
20
Huntley C, Cooper J, Stiles M, et al. Predicting success of oral appliance therapy in treating obstructive sleep apnea using drug-induced sleep endoscopy[J]. J Clin Sleep Med, 2018, 14(8):1333-1337.
21
Bibbins-Domingo K, Grossman DC, Curry SJ, et al. Screening for obstructive sleep apnea in adults: US preventive services task force recommendation statement[J]. JAMA, 2017, 317(4):407-414.
22
Jonas DE, Amick HR, Feltner C, et al. Screening for obstructive sleep apnea in adults: evidence report and systematic review for the US preventive services task force[J]. JAMA, 2017, 317(4):415-433.
23
Chung F, Abdullah HR, Liao P, et al. STOP-Bang questionnaire: A practical approach to screen for obstructive sleep apnea[J]. Chest, 2016, 149(3):631-638.
24
Nitin J, Anjana B, Nivetha M, et al. Screen of obstructive sleep apnea: A review of questionnaire-based tools[J]. Clin Pulmo Med, 2018, 25(6):209-214.
25
Chin HY, Chen PY, Chuang LP, et al. Diagnostic accuracy of the Berlin questionnaire, STOP-Bang, STOP, and Epworth sleepiness scale in detecting obstructive sleep apnea: A bivariate meta-analysis[J]. Sleep Med Rev, 2017, 36:57-70.
26
Amra B, Javani M, Soltaninejad F, et al. Comparison of Berlin questionnaire,STOP-Bang, and Epworth sleepiness scale for diagnosing obstructive sleep apnea in Persian patients[J]. 2018, 9(9):28.
27
Yagi H, Nakata S, Tsuge H, et al. Morphological examination of upper airway in obstructive sleep apnea[J]. Auris Nasus Larynx, 2009, 36(4):444-449.
28
Avincsal MO, Dinc ME, Ulusoy S, et al. Modified Mallampati score improves specificity of STOP-bang questionnaire for obstructive sleep apnea[J]. J Craniofac Surg, 2017, 28(4):904-908.
29
Dette FG, Graf J, Cassel W, et al. Combination of STOP-Bang score with Mallampati score fails to improve specificity in the prediction of sleep-disordered breathing[J]. Minerva Anestesiol, 2016, 82(6):625-34.
30
Nagappa M, Liao P, Wong J, et al. Validation of the STOP-Bang questionnaire as a screening tool for obstructive sleep apnea among different populations: A systematic review and Meta-Analysis[J]. PLoS One, 2015, 10(12):e0143697.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 吴姗姗, 潘裕民, 刘晋, 张劲松, 乔莉. 睡眠呼吸暂停综合征患者静脉血栓栓塞症发生率的Meta分析[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 312-317.
[3] 李国煜, 丛赟, 祖丽胡马尔·麦麦提艾力, 何铁英. 急性胰腺炎并发门静脉系统血栓形成的危险因素及预测模型构建[J]. 中华普通外科学文献(电子版), 2024, 18(04): 266-270.
[4] 丁关棣, 黄云, 曹震, 刘刚. 胃癌根治术后感染性并发症预测:基于真实世界数据的Nomogram模型开发与验证[J]. 中华普外科手术学杂志(电子版), 2024, 18(03): 261-266.
[5] 杨攀, 黄晓寒, 邓才霞, 周利航, 周向东, 罗虎. SMARCA4缺失的胸部未分化肿瘤临床特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 529-534.
[6] 姜露, 周菊, 毛杨, 代黔. 单细胞和bulk RNA测序的综合分析预测肺鳞状细胞癌治疗反应和预后[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 535-542.
[7] 方晓玉, 王婷, 赵珊, 陈锋. HALP指数对AECOPD并发呼吸衰竭患者ICU结局的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 639-641.
[8] 何慧玲, 鲁祖斌, 冯嘉莉, 梁声强. 术前外周血NLR和PLR对结肠癌术后肝转移的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 682-687.
[9] 周璐, 温镕博, 刘子璇, 李奕飏, 周乐其, 朱晓明, 龚海峰, 高显华, 楼征, 刘连杰, 郝立强, 于冠宇, 张卫. Changhai-AL-Prediction预测模型指导预防性造口合理实施的卫生经济学研究[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 280-287.
[10] 国超凡, 彭琪博, 郑章强, 于向阳. 低位前切除综合征风险预测及治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 335-340.
[11] 秦相清, 朱陈, 张海银. 构建诺模图模型预测肝硬化食管胃底静脉曲张出血的风险[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 330-335.
[12] 刘伟, 高续, 谢玉海, 蒋哲, 刘士成. 基于增强CT影像组学模型在预测急性胰腺炎复发中的应用价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 348-354.
[13] 田娜, 韩飞天. 基于CT平扫影像组学模型与系统免疫炎症指数预测急性胰腺炎复发模型的建立[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 355-359.
[14] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
[15] 黄圣楷, 许斌, 苏健, 孙龙. 海南省2010~2020年乙型肝炎流行趋势的时间序列分析及预测[J]. 中华临床医师杂志(电子版), 2024, 18(06): 555-561.
阅读次数
全文


摘要