切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (01) : 24 -30. doi: 10.3877/cma.j.issn.1674-6902.2021.01.005

论著

呼出气一氧化氮和血嗜酸性粒细胞对哮喘患者气道高反应性程度的预测价值
李江华1, 李力1, 王玉波1, 陈恒屹1, 何勇1,()   
  1. 1. 400032 重庆,陆军(第三)军医大学第三附属医院呼吸与危重症医学科
  • 收稿日期:2020-10-05 出版日期:2021-02-25
  • 通信作者: 何勇
  • 基金资助:
    陆军医科大学临床医学科研人才培养计划(2019XLC2019)

Predictive value of exhaled nitric oxide and blood eosinophils on the degree of airway hyperresponsiveness in asthma patients

Jianghua Li1, Li Li1, Yubo Wang1, Hengyi Chen1, Yong He1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Army Military Medical University, Chongqing 400032, China
  • Received:2020-10-05 Published:2021-02-25
  • Corresponding author: Yong He
引用本文:

李江华, 李力, 王玉波, 陈恒屹, 何勇. 呼出气一氧化氮和血嗜酸性粒细胞对哮喘患者气道高反应性程度的预测价值[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 24-30.

Jianghua Li, Li Li, Yubo Wang, Hengyi Chen, Yong He. Predictive value of exhaled nitric oxide and blood eosinophils on the degree of airway hyperresponsiveness in asthma patients[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(01): 24-30.

目的

分析呼出气一氧化氮(fraction of exhaled nitric oxide, FeNO)水平和血嗜酸性粒细胞(blood eosinophil, B-Eos)计数对哮喘患者气道高反应性(airway hyperresponsiveness, AHR)程度的预测价值,并探索AHR严重程度的预测模型。

方法

选择2014年1月至2019年12月于我院首诊为哮喘的患者1 347例,将其中520例具有FeNO和B-Eos的纳入主要研究人群。依据乙酰甲胆碱激发试验(methacholine challenge test, MCT)结果,分为重度AHR组(MCT为中度或重度阳性183例和轻度AHR组(MCT为极轻度或轻度阳性337例。然后分析两组差异,用Logistic回归构建预测模型,最后绘制重度AHR风险的列线图和森林图。

结果

重度AHR组的FeNO和B-Eos均高于轻度AHR组(73 vs. 36 ppb、394 vs. 243个/μl,P<0.001)。Logistic回归示年龄、性别、FEV1/FVC、B-Eos、FeNO为重度AHR的独立危险因素,将它们纳入回归模型,其灵敏度为49.7%,特异度为87.8%。受试者工作特征曲线示模型的曲线下面积明显高于单独的FeNO或B-Eos(0.797 vs. 0.715或0.644,P<0.001)。重度AHR风险的亚组分析示:随着FeNO或B-Eos的增高风险逐步增高(趋势检验P<0.001);女性的风险为男性的1.57倍(P=0.041),而低FEV1/FVC组(<70%)为正常组的3.38倍(P<0.001)。

结论

在哮喘患者中单独的FeNO或B-Eos对重度AHR具有中等程度的预测效能,通过多因素回归模型构建的列线图可以用于预测重度AHR的概率。

Objective

To analyze the predictive value of the fractional of exhaled nitric oxide (FeNO) and blood eosinophil (B-Eos) counts on the severity of airway hyperresponsiveness in asthma patients, then explore a prediction model for the severity of AHR.

Methods

This study retrospectively collected 1347 patients diagnosed with asthma in our hospital from January 2014 to December 2019, and identified a cohort of 520 patients who had simultaneous completed datasets of FeNO and B-Eos. According to the methacholine challenge test (MCT) results, the population was divided into severe AHR group (MCT is moderate or severely positive, n=183) and mild AHR group (MCT is very mild or slightly positive, n=337). The differences in demographics, lung function, FeNO and B-Eos are analyzed between these two groups. Logistic regression is used to construct a multi-factor regression model, then the risk of severe AHR is displayed by nomogram and forest chart.

Results

FeNO and B-Eos in the severe AHR group were significantly higher than those in the mild AHR group (73 vs. 36 ppb, 394 vs. 243 cells/μl, P<0.001). Logistic regression showed that age, gender, FEV1/FVC ratio, B-Eos, and FeNO were independent risk factors for severe AHR. The model incorporating these risk factors has a sensitivity of 49.7% and a specificity of 87.8%. The receiver operating characteristic (ROC) curve analysis shows that the AUC of the regression model is significantly higher than that of FeNO or B-Eos alone (0.797 vs. 0.715 or 0.644, P<0.001). When comparing the risk of having severe AHR in different subgroups, the adjusted odds ratio (aOR) of having severe AHR elevated progressively with the gradual increase in FeNO or B-Eos (P<0.001). While, the multivariable aOR of having severe AHR was 1.57 for females (P=0.041), 3.38 for patients with lower FEV1/FVC ratio (<70%, P<0.001).

Conclusion

FeNO or B-Eos alone has moderate diagnostic accuracy for predicting severe AHR. The nomogram constructed by the multi-factor regression model can be used to predict the probability of severe AHR.

图1 MCT等级分组后FeNO及B-Eos分布的散点图;注:(A)MCT等级分组后FeNO分布的散点图;(B)MCT等级分组后B-Eos分布的散点图;备注:各指标的组间散点分布以不同颜色区分,短线标注为每组的中位数和四分位数范围;组间统计学差异采用Kruskal-Wallis H检验比较
表1 研究人群人口学资料及基线特征
临床资料 气道高反应性程度 P 数据是否齐全d P
轻度(MCT+或+/-)(n=337) 重度(MCT++或+++)(n=183) 数据齐全组(n=520) 数据不齐组(n=827)
年龄(岁) 45(32~52) 41(32~49) 0.040a 43.5(32~51) 44(31.75~52) 0.591a
身高(cm) 158(153~165) 160(153~165) 0.483a 159(153~165) 159(153~166) 0.218a
体重(kg) 58(52~66) 57(52~65) 0.346a 58(52~66) 58(52~66) 0.722a
体重指数(kg/m2) 23.37(21.09~25.59) 22.86(21.19~25) 0.156a 23.21(21.12~25.47) 22.95(20.58~25.49) 0.428a
白细胞(×109/L) 6.87(5.86~8.53) 7.23(6.1~8.85) 0.212a 7.06(5.9~8.7) 7.58(6.25~8.67)(n=84) 0.065a
中性粒细胞(%) 59.38±9.80 57.10±10.05 0.012b 58.58±9.94 60.01±9.05(n=84) 0.214b
嗜酸性粒细胞计数(/μl) 243(111.5~462.5) 394(216~617) <0.001a 289.5(134.25~500) 249(150~481.25)(n=84) 0.824a
嗜酸性粒细胞(%) 3.5(1.6~6.3) 5.6(3.3~8.6) <0.001a 4.2(2~7.38) 4.05(1.9~5.88)(n=84) 0.382a
FeNO (ppb) 36(20~67) 73(40~132) <0.001a 50(24~87) 48.5(24~88)(n=576) 0.975a
用力肺活量(占预计值%) 99.4(90.6~108.4) 98.9(93.5~109.5) 0.394a 99.2(91.75~108.78) 97.95(90.78~106.9) 0.049a
FEV1(占预计值%) 89.7(81.4~99.9) 84(76.4~92.7) <0.001a 87.65(79.7~97.1) 86.9(80.4~95.3) 0.547a
FEV1/FVC (%) 77(69.53~82.04) 69.98(66.33~76.8) <0.001a 74.88(68.25~80.08) 75.5(69.03~80.9) 0.169a
性别     0.552c     0.206c
  111(32.9) 65(35.5)   176(33.8) 308(37.2)  
  226(67.1) 118(64.5)   344(66.2) 519(62.8)  
图2 预测AHR程度的ROC曲线;注:(A)所有患者中FeNO、B-Eos及回归模型的ROC曲线比较;(B)女性患者中FeNO、B-Eos及回归模型的ROC曲线比较。b:采用Hanley&McNeil非参数方法
表2 FeNO及B-Eos不同界值预测重度AHR的准确性
图3 预测重度AHR模型的列线图;注:Logistic回归模型的列线图
表3 多因素Logistic回归模型的统计量
图4 不同分组重度AHR占比及乙酰甲胆碱PD20-FEV1剂量分布;注:(A)FeNO及B-Eos高低分组后AHR程度的直方图;(B)FeNO及B-Eos高低分组后乙酰甲胆碱PD20-FEV1的散点图;备注:以FeNO、B-Eos预测重度AHR的最佳截止值(52 ppb或170个/微升)区分各自高或低
1
2020 GINA Report, Global strategy for asthma management and prevention[J]. 2020. accessed May 30, 2020).

URL    
2
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2016年版)[J]. 中华结核和呼吸杂志,2016, 39(9): 675-697.
3
娄月妍,郑 宇,张丽妍,等. 呼出气一氧化氮在哮喘中的临床意义[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(3): 297-301.
4
王 彦,吴 奎,王长征,等. 支气管哮喘患者的高分辨率CT的常见表现[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(6): 772-775.
5
Papi A, Brightling C, Pedersen SE, et al. Asthma[J]. Lancet, 2018, 391(10122): 783-800.
6
Huang K, Yang T, Xu J, et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study[J]. The Lancet, 2019, 394(10196): 407-418.
7
王长征. 改善支气管哮喘控制现状,需要重视患者的长期管理[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(4): 296-298.
8
Barjaktarevic I, Kaner R, Buhr RG, et al. Bronchodilator responsiveness or reversibility in asthma and COPD-a need for clarity[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 3511-3513.
9
Coates AL, Wanger J, Cockcroft DW, et al. ERS technical standard on bronchial challenge testing: general considerations and performance of methacholine challenge tests[J]. European Respiratory Journal, 2017, 49(5): 1601526.
10
Nair P, Martin JG, Cockcroft DC, et al. Airway hyperresponsiveness in asthma: Measurement and clinical relevance[J]. J Allergy Clin Immunol Pract, 2017, 5(3): 649-659.
11
Hancox RJ, Pavord ID, Sears MR. Associations between blood eosinophils and decline in lung function among adults with and without asthma[J]. European Respiratory Journal, 2018, 51(4): 1702536.
12
Quaedvlieg V, Sele J, Henket M, et al. Association between asthma control and bronchial hyperresponsiveness and airways inflammation: a cross-sectional study in daily practice[J]. Clin Exp Allergy, 2009, 39(12): 1822-1829.
13
中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第三部分)——组织胺和乙酰甲胆碱支气管激发试验[J]. 中华结核和呼吸杂志,2014, 37(8): 566-571.
14
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches[J]. Nature Medicine, 2012, 18(5): 716-725.
15
Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease[J]. Nature Reviews Immunology, 2018, 18(7): 454-466.
16
Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases[J]. The Lancet, 2018, 391(10118): 350-400.
17
Schwartz N, Grossman A, Levy Y, et al. Correlation between eosinophil count and methacholine challenge test in asymptomatic subjects[J]. J Asthma, 2012, 49(4): 336-341.
18
Malinovschi A, Janson C, Borres M, et al. Simultaneously increased fraction of exhaled nitric oxide levels and blood eosinophil counts relate to increased asthma morbidity[J]. J Allergy Clin Immunol, 2016, 138(5): 1301-1308.
19
Horváth I, Barnes PJ, Loukides S, et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease[J]. European Respir J, 2017, 49(4): 1600965.
20
Schulze J, Rosewich M, Riemer C, et al. Methacholine challenge-Comparison of an ATS protocol to a new rapid single concentration technique[J]. Respir Med, 2009, 103(12): 1898-1903.
21
Wang M, Luo X, Xu S, et al. Trends in smoking prevalence and implication for chronic diseases in China: serial national cross-sectional surveys from 2003 to 2013[J]. Lancet Respir Med, 2019, 7(1): 35-45.
22
Aaron SD, Boulet LP, Reddel HK, et al. Underdiagnosis and overdiagnosis of asthma[J]. Am J Respir Crit Care Med, 2018, 198(8): 1012-1020.
23
Saglani S, Menzie-Gow AN. Approaches to asthma diagnosis in Children and adults[J]. Frontiers in Pediatrics, 2019, 7.
24
Sano H, Tomita K, Sano A, et al. Accuracy of objective tests for diagnosing adult asthma in symptomatic patients: A systematic literature review and hierarchical Bayesian latent-class meta-analysis[J]. Allergol Int, 2019, 68(2): 191-198.
25
Korevaar DAD, Westerhof GAM, Wang JM, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis[J]. Lancet Respir Med, 2015, 3(4): 290-300.
26
van Bragt J, Vijverberg S, Weersink E, et al. Blood biomarkers in chronic airways diseases and their role in diagnosis and management[J]. Expert Rev Respir Med, 2018, 12(5): 361-374.
27
Menzies-Gow A, Mansur AH, Brightling CE. Clinical utility of fractional exhaled nitric oxide in severe asthma management[J]. Eur Respir J, 2020, 55(3): 1901633.
28
Bernholm KF, Homoe AS, Meteran H, et al. FeNO-based asthma management results in faster improvement of airway hyperresponsiveness[J]. ERJ Open Res, 2018, 4(4): 00147-2017.
29
Uk N I F H. Asthma: diagnosis and monitoring of asthma in adults, children and young people[M]. London:National Institute for Health and Care Excellence (UK), 2017. accessed May 30, 2020).

URL    
30
Bougard N, Nekoee H, Schleich F, et al. Assessment of diagnostic accuracy of lung function indices and FeNO for a positive methacholine challenge[J]. Biochem Pharmacol, 2020: 113981.
31
Price DB, Rigazio A, Campbell JD, et al. Blood eosinophil count and prospective annual asthma disease burden: a UK cohort study[J]. Lancet Respir Med, 2015, 3(11): 849-858.
[1] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[2] 王思思, 金晶, 汪婕. 初产妇哺乳期乳腺炎发生的影响因素及风险模型构建[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 272-276.
[3] 刘丹丹, 宋鸣, 李霞, 徐夏君. 老年髋部骨折术后便秘的影响因素及其列线图预测模型[J]. 中华关节外科杂志(电子版), 2023, 17(05): 607-612.
[4] 张秋彬, 张楠, 林清婷, 徐军, 朱华栋, 姜辉. 急性胰腺炎合并急性肾损伤患者的预后评估[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 382-389.
[5] 郑鹏, 吴赛萍, 谢秀璋, 史庆丰. 术前预测感染性肾结石列线图模型的构建及验证[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(05): 299-306.
[6] 杨梅, 周春, 赵艾红, 王琴. 儿童难治性肺炎支原体肺炎所致塑型性支气管炎风险列线图模型的构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 274-281.
[7] 王迎迎, 谢平. 乙型肝炎病毒感染合并肺结核患者发生肝损伤的危险因素及预测模型构建[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 267-273.
[8] 甄子铂, 刘金虎. 基于列线图模型探究静脉全身麻醉腹腔镜胆囊切除术患者术后肠道功能紊乱的影响因素[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 61-65.
[9] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[10] 王万川, 麦广智, 张晓槟, 冯家豪. 腹腔镜下LAR术治疗低位直肠癌保肛术中钉仓数量与术后LARS的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 491-496.
[11] 徐伯麒, 陶亮, 章帆, 毛忠琦. 结肠癌患者淋巴结转移预测模型的建立[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 393-397.
[12] 于恒, 陆晓峰, 宋鹏, 毛永欢, 孙锋, 艾世超, 王峰, 陶亮, 胡琼源, 王萌, 刘颂, 王琼, 沈晓菲, 管文贤. 胃癌肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 375-379.
[13] 徐慧新, 刘波, 唐立钧. 体外冲击波治疗>1 cm输尿管上段结石失败的预测模型建立[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 506-511.
[14] 王立涛, 刘恩瑞, 李振鲁, 吴昌亮, 高鹏. 基于SEER数据库手术后原发性阑尾肿瘤患者预后列线图构建与验证[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 404-414.
[15] 杨静, 顾红叶, 赵莹莹, 孙梦霞, 查园园, 王琪. 老年血液透析患者短期死亡的影响因素及列线图预测模型的预测作用[J]. 中华肾病研究电子杂志, 2023, 12(05): 254-259.
阅读次数
全文


摘要