切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (01) : 117 -120. doi: 10.3877/cma.j.issn.1674-6902.2021.01.029

综述

Bach1信号途径与非小细胞癌转移的研究进展
张越1, 王浩宇1, 王星月1, 刘伟2,()   
  1. 1. 050051 河北,河北医科大学基础医学院
    2. 050017 河北,河北医科大学基础医学院免疫学教研室
  • 收稿日期:2020-09-23 出版日期:2021-02-25
  • 通信作者: 刘伟
  • 基金资助:
    河北省高等教育学会2019年度高等教育科研课题(GJXHZ2019-35)

Research progress of BACH1 signaling pathway and metastasis of non-small cell cancer

Yue Zhang1, Haoyu Wang1, Xingyue Wang1   

  • Received:2020-09-23 Published:2021-02-25
引用本文:

张越, 王浩宇, 王星月, 刘伟. Bach1信号途径与非小细胞癌转移的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 117-120.

Yue Zhang, Haoyu Wang, Xingyue Wang. Research progress of BACH1 signaling pathway and metastasis of non-small cell cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(01): 117-120.

图1 Bach1促进NSCLC转移机制[9,10,20])
1
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China[J]. CA Cancer J Clin, 2016, 66: 115-132.
2
Bhardwaj A, Yang Y, Ueberheide B, et al. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation[J]. Nat Commun, 2017, 8: 2214.
3
Brady JJ, Chuang CH, Greenside PG, et al. An arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency[J]. Cancer Cell, 2016, 29: 697-710.
4
Lignitto L, LeBoeuf SE, Homer H, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of BACH1[J]. Cell, 2019, 178: 316-329.
5
Wiel C, Le Gal K, Ibrahim MX, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis[J]. Cell, 2019, 178: 330-345.
6
Sato M, Matsumoto M, Saiki Y, et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition[J]. Cancer Res, 2020, 80(6): 1279-1292.
7
Segawa K, Watanabe-Matsui M, Matsui T, et al. Functional Heme Binding to the Intrinsically Disordered C-Terminal Region of BACH1, a Transcriptional Repressor[J]. Tohoku J Exp Med, 2019, 247(3): 153-159.
8
Davudian S, Mansoori B, Shajari N, et al. BACH1, the master regulator gene: A novel candidate target for cancer therapy[J]. Gene, 2016, 588: 30-37.
9
Zhou Y, Wu H, Zhao M, et al. The bach family of transcription factors: A comprehensive review[J]. Clin Rev Allergy Immunol, 2016, 50: 345-356.
10
Zhang C, Guo ZM. Multiple functions of Maf in the regulation of cellular development and differentiation[J]. Diabetes Metab Res Rev, 2015, 31: 773-778.
11
Lee J, Yesilkanal AE, Wynne JP, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism[J]. Nature, 2019, 568: 254-258.
12
Han W, Zhang Y, Niu C, et al. BTB and CNC homology 1 (BACH1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition[J]. Cancer Lett, 2019, 445: 45-56.
13
Ying Y, Wang Y, Huang X, et al. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1[J]. Oncogene, 2020, 39(5): 1004-1017.
14
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511: 543-550.
15
Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis[J]. Nat Med, 2017, 23: 1362-1368.
16
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer[J]. Cancer Cell, 2018, 34: 21-43.
17
Tao S, Liu P, Luo G, et al. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex[J]. Mol Cell Biol, 2017, 37.
18
Rochette L, Zeller M, Cottin Y, et al. Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes[J]. Trends Endocrinol Metab, 2018, 29: 74-85.
19
Lee J, Farquhar KS, Yun J, et al. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions[J]. Proc Natl Acad Sci USA, 2014, 111: E364-E373.
20
Anderson NM, Simon MC. BACH1 orchestrates lung cancer metastasis[J]. Cell, 2019, 178: 265-267.
21
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553: 446-454.
22
Carletta A, Tilborg A, Moineaux L, et al. How does binding of imidazole-based inhibitors to heme oxygenase-1 influence their conformation? Insights combining crystal structures and molecular modelling[J]. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2015, 71: 447-454.
23
Mucha O, Podkalicka P, Mikulski M, et al. Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment[J]. Arch Biochem Biophys, 2019, 671: 130-142.
24
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8: 1461-1474.
25
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24: 213-228.
26
Xu S, Catapang A, Braas D, et al. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers[J]. Cancer Metab, 2018, 6: 7.
27
Li Y, Wang D, Ren H, et al. Metformin alleviates breast cancer through targeting high-mobility group AT-hook 2[J]. Thorac Cancer, 2020, 11(3): 686-692.
28
Saber S, Ghanim AMH, El-Ahwany E, et al. Novel complementary antitumour effects of celastrol and metformin by targeting IkappaBkappaB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis[J]. Cancer Chemother Pharmacol, 2020, 85(2): 331-343.
29
Chen K, Qian W, Jiang Z, et al. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer[J]. Mol Cancer, 2017, 16: 131.
30
Verdura S, Cuyas E, Martin-Castillo B, et al. Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy[J]. Oncoimmunology, 2019, 8: e1633235.
31
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, et al. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration[J]. Br J Cancer, 2020, 122(6): 895-903.
[1] 张锦, 郑瑾, 叶陈晓, 陈海滔, 李欣荣, 肖海娟, 郭勇. 基于糖酵解相关基因模型的乳腺癌患者预后及免疫功能综合分析[J]. 中华乳腺病杂志(电子版), 2022, 16(06): 336-345.
[2] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[3] 钟轼, 李斌飞, 温君琳, 古晨, 廖小卒. 右美托咪定缓解神经病理性疼痛作用机制的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(03): 237-240.
[4] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[5] 杨斌, 胡光太, 周纲. 完整剥离和横断疝囊在单侧腹股沟斜疝经腹腹膜前修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(01): 42-46.
[6] 任伙明, 苏舒, 张健, 范彬. 腹腔镜经腹腹膜前与疝环充填式修补术治疗腹股沟疝对比分析[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 682-686.
[7] 刘成飞, 徐少强, 姚添, 黄河. 谷胱甘肽在结直肠癌增殖转移及诊疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2022, 11(06): 506-510.
[8] 尚慧娟, 袁晓冬. 机械取栓术后应用依达拉奉右崁醇对急性缺血性脑卒中预后的改善[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 295-301.
[9] 阿迪莱·阿卜杜热西提, 费奥, 邢晓雯, 谢胜强, 张睿, 兰晓娟, 程岗. 三种模拟创伤性脑损伤体外细胞模型的损伤特征比较[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 69-75.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[12] 孙凤兰, 周萍, 程兴璞, 张倩倩. 腹腔镜全子宫切除术对子宫肌瘤患者机体氧化应激损伤及术后并发症的影响[J]. 中华临床医师杂志(电子版), 2023, 17(02): 149-153.
[13] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[14] 靳潇潇, 郑聪, 何文强. 肾结石与高血压关系的研究进展[J]. 中华临床医师杂志(电子版), 2022, 16(12): 1284-1288.
[15] 买买提·依斯热依力, 依力汗·依明, 王永康, 阿巴伯克力·乌斯曼, 艾克拜尔·艾力, 李义亮, 克力木·阿不都热依木. 氧化应激对3T3-L1前脂肪细胞中GLP-1/DPP-4信号通路以及炎症因子表达的影响[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 186-191.
阅读次数
全文


摘要