1 |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China[J]. CA Cancer J Clin, 2016, 66: 115-132.
|
2 |
Bhardwaj A, Yang Y, Ueberheide B, et al. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation[J]. Nat Commun, 2017, 8: 2214.
|
3 |
Brady JJ, Chuang CH, Greenside PG, et al. An arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency[J]. Cancer Cell, 2016, 29: 697-710.
|
4 |
Lignitto L, LeBoeuf SE, Homer H, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of BACH1[J]. Cell, 2019, 178: 316-329.
|
5 |
Wiel C, Le Gal K, Ibrahim MX, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis[J]. Cell, 2019, 178: 330-345.
|
6 |
Sato M, Matsumoto M, Saiki Y, et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition[J]. Cancer Res, 2020, 80(6): 1279-1292.
|
7 |
Segawa K, Watanabe-Matsui M, Matsui T, et al. Functional Heme Binding to the Intrinsically Disordered C-Terminal Region of BACH1, a Transcriptional Repressor[J]. Tohoku J Exp Med, 2019, 247(3): 153-159.
|
8 |
Davudian S, Mansoori B, Shajari N, et al. BACH1, the master regulator gene: A novel candidate target for cancer therapy[J]. Gene, 2016, 588: 30-37.
|
9 |
Zhou Y, Wu H, Zhao M, et al. The bach family of transcription factors: A comprehensive review[J]. Clin Rev Allergy Immunol, 2016, 50: 345-356.
|
10 |
Zhang C, Guo ZM. Multiple functions of Maf in the regulation of cellular development and differentiation[J]. Diabetes Metab Res Rev, 2015, 31: 773-778.
|
11 |
Lee J, Yesilkanal AE, Wynne JP, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism[J]. Nature, 2019, 568: 254-258.
|
12 |
Han W, Zhang Y, Niu C, et al. BTB and CNC homology 1 (BACH1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition[J]. Cancer Lett, 2019, 445: 45-56.
|
13 |
Ying Y, Wang Y, Huang X, et al. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1[J]. Oncogene, 2020, 39(5): 1004-1017.
|
14 |
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511: 543-550.
|
15 |
Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis[J]. Nat Med, 2017, 23: 1362-1368.
|
16 |
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer[J]. Cancer Cell, 2018, 34: 21-43.
|
17 |
Tao S, Liu P, Luo G, et al. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex[J]. Mol Cell Biol, 2017, 37.
|
18 |
Rochette L, Zeller M, Cottin Y, et al. Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes[J]. Trends Endocrinol Metab, 2018, 29: 74-85.
|
19 |
Lee J, Farquhar KS, Yun J, et al. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions[J]. Proc Natl Acad Sci USA, 2014, 111: E364-E373.
|
20 |
Anderson NM, Simon MC. BACH1 orchestrates lung cancer metastasis[J]. Cell, 2019, 178: 265-267.
|
21 |
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553: 446-454.
|
22 |
Carletta A, Tilborg A, Moineaux L, et al. How does binding of imidazole-based inhibitors to heme oxygenase-1 influence their conformation? Insights combining crystal structures and molecular modelling[J]. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2015, 71: 447-454.
|
23 |
Mucha O, Podkalicka P, Mikulski M, et al. Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment[J]. Arch Biochem Biophys, 2019, 671: 130-142.
|
24 |
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8: 1461-1474.
|
25 |
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24: 213-228.
|
26 |
Xu S, Catapang A, Braas D, et al. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers[J]. Cancer Metab, 2018, 6: 7.
|
27 |
Li Y, Wang D, Ren H, et al. Metformin alleviates breast cancer through targeting high-mobility group AT-hook 2[J]. Thorac Cancer, 2020, 11(3): 686-692.
|
28 |
Saber S, Ghanim AMH, El-Ahwany E, et al. Novel complementary antitumour effects of celastrol and metformin by targeting IkappaBkappaB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis[J]. Cancer Chemother Pharmacol, 2020, 85(2): 331-343.
|
29 |
Chen K, Qian W, Jiang Z, et al. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer[J]. Mol Cancer, 2017, 16: 131.
|
30 |
Verdura S, Cuyas E, Martin-Castillo B, et al. Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy[J]. Oncoimmunology, 2019, 8: e1633235.
|
31 |
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, et al. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration[J]. Br J Cancer, 2020, 122(6): 895-903.
|