切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (01) : 117 -120. doi: 10.3877/cma.j.issn.1674-6902.2021.01.029

综述

Bach1信号途径与非小细胞癌转移的研究进展
张越1, 王浩宇1, 王星月1, 刘伟2,()   
  1. 1. 050051 河北,河北医科大学基础医学院
    2. 050017 河北,河北医科大学基础医学院免疫学教研室
  • 收稿日期:2020-09-23 出版日期:2021-02-25
  • 通信作者: 刘伟
  • 基金资助:
    河北省高等教育学会2019年度高等教育科研课题(GJXHZ2019-35)

Research progress of BACH1 signaling pathway and metastasis of non-small cell cancer

Yue Zhang1, Haoyu Wang1, Xingyue Wang1   

  • Received:2020-09-23 Published:2021-02-25
引用本文:

张越, 王浩宇, 王星月, 刘伟. Bach1信号途径与非小细胞癌转移的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(01): 117-120.

Yue Zhang, Haoyu Wang, Xingyue Wang. Research progress of BACH1 signaling pathway and metastasis of non-small cell cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(01): 117-120.

图1 Bach1促进NSCLC转移机制[9,10,20])
1
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China[J]. CA Cancer J Clin, 2016, 66: 115-132.
2
Bhardwaj A, Yang Y, Ueberheide B, et al. Whole proteome analysis of human tankyrase knockout cells reveals targets of tankyrase-mediated degradation[J]. Nat Commun, 2017, 8: 2214.
3
Brady JJ, Chuang CH, Greenside PG, et al. An arntl2-driven secretome enables lung adenocarcinoma metastatic self-sufficiency[J]. Cancer Cell, 2016, 29: 697-710.
4
Lignitto L, LeBoeuf SE, Homer H, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of BACH1[J]. Cell, 2019, 178: 316-329.
5
Wiel C, Le Gal K, Ibrahim MX, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis[J]. Cell, 2019, 178: 330-345.
6
Sato M, Matsumoto M, Saiki Y, et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition[J]. Cancer Res, 2020, 80(6): 1279-1292.
7
Segawa K, Watanabe-Matsui M, Matsui T, et al. Functional Heme Binding to the Intrinsically Disordered C-Terminal Region of BACH1, a Transcriptional Repressor[J]. Tohoku J Exp Med, 2019, 247(3): 153-159.
8
Davudian S, Mansoori B, Shajari N, et al. BACH1, the master regulator gene: A novel candidate target for cancer therapy[J]. Gene, 2016, 588: 30-37.
9
Zhou Y, Wu H, Zhao M, et al. The bach family of transcription factors: A comprehensive review[J]. Clin Rev Allergy Immunol, 2016, 50: 345-356.
10
Zhang C, Guo ZM. Multiple functions of Maf in the regulation of cellular development and differentiation[J]. Diabetes Metab Res Rev, 2015, 31: 773-778.
11
Lee J, Yesilkanal AE, Wynne JP, et al. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism[J]. Nature, 2019, 568: 254-258.
12
Han W, Zhang Y, Niu C, et al. BTB and CNC homology 1 (BACH1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition[J]. Cancer Lett, 2019, 445: 45-56.
13
Ying Y, Wang Y, Huang X, et al. Oncogenic HOXB8 is driven by MYC-regulated super-enhancer and potentiates colorectal cancer invasiveness via BACH1[J]. Oncogene, 2020, 39(5): 1004-1017.
14
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511: 543-550.
15
Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis[J]. Nat Med, 2017, 23: 1362-1368.
16
Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the Hallmarks of Cancer[J]. Cancer Cell, 2018, 34: 21-43.
17
Tao S, Liu P, Luo G, et al. p97 Negatively Regulates NRF2 by Extracting Ubiquitylated NRF2 from the KEAP1-CUL3 E3 Complex[J]. Mol Cell Biol, 2017, 37.
18
Rochette L, Zeller M, Cottin Y, et al. Redox functions of heme oxygenase-1 and biliverdin reductase in diabetes[J]. Trends Endocrinol Metab, 2018, 29: 74-85.
19
Lee J, Farquhar KS, Yun J, et al. Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions[J]. Proc Natl Acad Sci USA, 2014, 111: E364-E373.
20
Anderson NM, Simon MC. BACH1 orchestrates lung cancer metastasis[J]. Cell, 2019, 178: 265-267.
21
Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553: 446-454.
22
Carletta A, Tilborg A, Moineaux L, et al. How does binding of imidazole-based inhibitors to heme oxygenase-1 influence their conformation? Insights combining crystal structures and molecular modelling[J]. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2015, 71: 447-454.
23
Mucha O, Podkalicka P, Mikulski M, et al. Development and characterization of a new inhibitor of heme oxygenase activity for cancer treatment[J]. Arch Biochem Biophys, 2019, 671: 130-142.
24
Wang L, Xiong H, Wu F, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth[J]. Cell Rep, 2014, 8: 1461-1474.
25
Patra KC, Wang Q, Bhaskar PT, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer[J]. Cancer Cell, 2013, 24: 213-228.
26
Xu S, Catapang A, Braas D, et al. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers[J]. Cancer Metab, 2018, 6: 7.
27
Li Y, Wang D, Ren H, et al. Metformin alleviates breast cancer through targeting high-mobility group AT-hook 2[J]. Thorac Cancer, 2020, 11(3): 686-692.
28
Saber S, Ghanim AMH, El-Ahwany E, et al. Novel complementary antitumour effects of celastrol and metformin by targeting IkappaBkappaB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced murine hepatocarcinogenesis[J]. Cancer Chemother Pharmacol, 2020, 85(2): 331-343.
29
Chen K, Qian W, Jiang Z, et al. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer[J]. Mol Cancer, 2017, 16: 131.
30
Verdura S, Cuyas E, Martin-Castillo B, et al. Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy[J]. Oncoimmunology, 2019, 8: e1633235.
31
Beloueche-Babari M, Casals Galobart T, Delgado-Goni T, et al. Monocarboxylate transporter 1 blockade with AZD3965 inhibits lipid biosynthesis and increases tumour immune cell infiltration[J]. Br J Cancer, 2020, 122(6): 895-903.
[1] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[2] 杨文飞, 郝嘉文, 鲁梦远, 赵学刚, 李聪颖, 盖晨阳, 张晶, 张庆富. 高压电烧伤对大鼠心肌氧化应激的影响及N-乙酰半胱氨酸的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 106-112.
[3] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[4] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[5] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[6] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[7] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[8] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[9] 洪权. 肾脏疾病中的代谢重编程:新机制与新的治疗机会[J]. 中华肾病研究电子杂志, 2024, 13(01): 60-60.
[10] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[11] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[12] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[13] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 李易飞, 李文冉, 刘欢. 乳酸脱氢酶A在乳腺癌诊疗中的研究进展[J]. 中华诊断学电子杂志, 2024, 12(02): 128-132.
阅读次数
全文


摘要