切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 349 -355. doi: 10.3877/cma.j.issn.1674-6902.2024.03.002

论著

Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性
殷国青1, 曾莉2, 贺斌峰2, 孙芬芬1,()   
  1. 1. 400042 重庆,陆军特色医学中心呼吸科
    2. 400037 重庆,陆军(第三)军医大学第二附属医院全科医学科
  • 收稿日期:2024-03-21 出版日期:2024-06-25
  • 通信作者: 孙芬芬
  • 基金资助:
    重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0096)

Rab26 enhances the sensitivity of lung cancer cells resistant to Osimertinib by negative regulation of Nrf2

Guoqing Yin1, Li Zeng2, Binfeng He2, Fenfen Sun1,()   

  1. 1. Department of Respiratory, Army Medical Center of PLA, Chongqing, 400042
    2. Department of General practice, Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
  • Received:2024-03-21 Published:2024-06-25
  • Corresponding author: Fenfen Sun
引用本文:

殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.

Guoqing Yin, Li Zeng, Binfeng He, Fenfen Sun. Rab26 enhances the sensitivity of lung cancer cells resistant to Osimertinib by negative regulation of Nrf2[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(03): 349-355.

目的

分析Rab26在奥希替尼耐药细胞中的表达及调控肺癌耐药细胞对奥希替尼敏感性的作用和机制。

方法

采用浓度梯度递增法诱导H1975细胞为奥希替尼耐药细胞株(H1975OR)。根据Western blot和qPCR检测H1975、H1975OR中Rab26与核因子红细胞2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2) mRNA及蛋白表达水平。对Rab26进行过表达慢病毒感染H1975OR细胞(Rab26 OE组)后给予1 μM奥希替尼处理48 h,通过CCK-8和TUNEL判断细胞活力和凋亡情况,用流式细胞术检测细胞ROS水平。用Western blot检测H1975和H1975OR中Nrf2蛋白经10 mM MG132处理8 h后的表达水平。对Nrf2进行siRNA转染H1975OR细胞后给予1 μM奥希替尼处理48 h,通过CCK-8判断细胞活力,利用流式细胞术检测细胞ROS水平。

结果

H1975OR中Rab26 mRNA和蛋白表达低于H1975细胞(P<0.05),H1975OR中Nrf2蛋白表达高于H1975细胞(P<0.05),H1975OR组和H1975组之间的mRNA水平差异无统计学意义(P>0.05)。奥希替尼干预后Rab26 OE组的细胞活力低于Vector组,ROS水平和凋亡水平较Vector组升高(P<0.05)。Rab26 OE组中Nrf2蛋白表达水平较Vector组降低,两组间Nrf2 mRNA差异无统计学意义(P>0.05)。经MG132处理,Nrf2蛋白水平在Vector组和Rab26 OE组中升高(P>0.05)。敲低Nrf2,奥希替尼干预增加H1975OR细胞中ROS水平,抑制其细胞活力。

结论

Rab26可负性调控Nrf2蛋白表达,促进奥希替尼诱导的ROS的过度产生,促进细胞凋亡,增强肺癌耐药细胞对奥希替尼的敏感性。

Objective

To explore the expression of Rab26 in osimertinib-resistant cells, and the role and mechanism of regulating lung cancer resistant cells′sensitivity to osimertinib.

Methods

Using a concentration gradient increasing method, induce H1975 cells to become osimertinib-resistant cell line (H1975OR). Western blot and qPCR were utilized to detect the expression levels of Rab26 and Nrf2 mRNA and proteins in H1975 and H1975OR. After overexpressing Rab26 through lentiviral infection in H1975OR cells (Rab26 OE group), continue to treat them with 1 μM osimertinib for 48 hours. Assess cell viability and apoptosis through CCK-8 and TUNEL, and evaluate ROS levels through flow cytometry. Use Western blot to assess Nrf2 protein expression levels in H1975 and H1975OR after treatment with 10 mM MG132 for 8 hours. Transfect H1975OR cells with Nrf2 siRNA, followed by treatment with 1 μM osimertinib for 48 hours, and evaluate cell viability using CCK-8 and ROS levels through flow cytometry.

Results

Rab26 mRNA and protein expression in H1975OR were significantly lower than in H1975 cells (P<0.05), while Nrf2 protein expression in H1975OR was significantly higher than in H1975 cells (P<0.05), with no significant difference at the mRNA level between the two groups (P>0.05). After osimertinib intervention, the cell viability of the Rab26 OE group was significantly lower than the control group (Vector), with a significant increase in apoptosis rate and ROS levels compared to the Vector group (P<0.05). The expression level of Nrf2 protein in the Rab26 OE group was significantly lower than in the Vector group, but there was no significant difference in Nrf2 mRNA between the two groups (P>0.05). After MG132 treatment, the Nrf2 protein level significantly increased in both the Vector group and Rab26 OE group (P>0.05). Knocking down Nrf2 significantly increased ROS levels in H1975OR cells after osimertinib intervention, while inhibiting cell viability.

Conclusion

Rab26 may promote the oxidative stress response induced by osimertinib by negatively regulating Nrf2, enhancing sensitivity of lung cancer resistant cells to osimertinib.

图1 Rab26在H1975OR表达下调。注:A:倒置显微镜下H1975细胞和H1975OR细胞形态(比例尺:100 μM);B: CCK-8检测H1975和H1975OR不同浓度Osi处理48 h后细胞存活率;C:H1975和H1975OR的IC50;D:qPCR检测H1975和H1975OR中Rab26 mRNA表达水平;E:Western blot检测H1975OR中Rab26蛋白表达水平;F:对E图的半定量分析。*:P<0.05.
图2 过表达Rab26增强H1975OR对奥希替尼敏感性。注:A:Western blot检测Rab26蛋白表达水平;B:对A图的半定量分析;C:CCK-8检测Vector和Rab26 OE细胞经1 μM奥希替尼(Osi)48 h处理后细胞存活率;D:Tunel检测Vector和Rab26 OE细胞经1 μM奥希替尼(Osi)48 h处理后细胞凋亡情况。*:P<0.05, ns:P>0.05
图3 Rab26促进ROS产生,增强H1975OR对奥希替尼敏感性。注:A:流式细胞仪检测奥希替尼处理后细胞中ROS平均荧光强度(mean fluorescence intensity, MFI);B:CCK-8检测NAC预处理后经奥希替尼处理48 h后H1975OR/Rab26-OE细胞的存活率。*: P<0.05
图4 Rab26负性调控Nrf2蛋白表达。注:A:qPCR检测H1975和H1975OR细胞中Nrf2 mRNA表达水平;B:western blot检测H1975和H1975OR细胞中Nrf2蛋白表达水平;C:对B图的半定量分析;D:qPCR检测Vector和Rab26 OE细胞中Nrf2 mRNA及蛋白水平;E:western blot检测Vector和Rab26 OE细胞中Nrf2蛋白表达;F:对E图的半定量分析;G:Western blot检测Nrf2蛋白表达。Vector和Rab26 OE组细胞经10 μM MG132处理8 h; H:对G图的半定量分析。*:P<0.05, ns:P>0.05
图5 敲低Nrf2增强H1975OR细胞对奥希替尼敏感性。注:A:qPCR检测Nrf2 mRNA的表达水平;B:western blot检测Nrf2蛋白表达水平。Nrf2 siRNA和NC转染H1975OR细胞24 h;C:对B图的半定量分析;D:流式细胞术检测细胞中ROS水平;E:CCK-8检测细胞存活率。Nrf2 siRNA和NC转染H1975OR细胞24 h后,1 μM奥希替尼处理细胞48 h,Nrf2 siRNA和NC转染H1975OR细胞24 h后,1 μM奥希替尼处理细胞48 h。F:CCK-8检测细胞存活率,Vector和Rab26 OE细胞转染Nrf2 siRNA后,1 μM奥希替尼处理细胞48 h。*:P<0.05,ns:P>0.05
1
Jänne PA, Yang JCH, Kim DW, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer[J]. New England J Med, 2015, 372(18): 1689-1699.
2
张 剑,卢从华,李江华,等. 根据转录组学分析奥希替尼获得性耐药机制的研究[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(2): 195-200.
3
Stenmark H. Rab GTPases as coordinators of vesicle traffic[J]. Nat Rev Molecul Cell Biol, 2009, 10(8): 513-525.
4
Prashar A, Schnettger L, Bernard EM, et al. Rab GTPases in immunity and inflammation[J]. Front Cell Infect Microbiol, 2017, 7: 435.
5
Langemeyer L, Fröhlich F, Ungermann C. Rab GTPase function in endosome and lysosome biogenesis[J]. Trends Cell Biol, 2018, 28(11): 957-970.
6
Gong D, Liu X, Wu P, et al. Rab26 alleviates sepsis-induced immunosuppression as a master regulator of macrophage ferroptosis and polarization shift[J]. Free Rad Biol Med, 2024, 212: 271-283.
7
Li C, Fan Y, Lan TH, et al. Rab26 modulates the cell surface transport of α2-adrenergic receptors from the Golgi[J]. J Biolog Chem, 2012, 287(51): 42784-42794.
8
Dong W, He B, Qian H, et al. RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury[J]. Autoph, 2018, 14(10): 1677-1692.
9
Tang ZH, Jiang XM, Guo X, et al. Characterization of Osimertinib(AZD9291)-resistant non-small cell lung cancer NCI-H1975/OSIR cell line[J]. Oncotarget2016, 7(49): 81598-81610.
10
Ma CS, Lv QM, Zhang KR, et al. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells[J]. Acta Pharmacol Sin, 2021, 42(4): 613-623.
11
Zalaquett Z, Catherine Rita Hachem M, Kassis Y, et al. Acquired resistance mechanisms to osimertinib: The constant battle[J]. Cancer Treatment Rev, 2023, 116: 102557.
12
Niederst MJ, Hu H, Mulvey HE, et al. The Allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies[J]. Clin Cancer Res, 2015, 21(17): 3924-3933.
13
Ou SHI, Agarwal N, Ali SM. High MET amplification level as a resistance mechanism to osimertinib (AZD9291) in a patient that symptomatically responded to crizotinib treatment post-osimertinib progression[J]. Lung Cancer (Amsterdam, Netherlands), 2016, 98: 59-61.
14
Ku BM, Choi MK, Sun JM, et al. Acquired resistance to AZD9291 as an upfront treatment is dependent on ERK signaling in a preclinical model[J]. PloS One, 2018, 13(4): e0194730.
15
Xiu W, Zhang Q, Yu M, et al. Case Report: outcome of osimertinib treatment in lung adenocarcinoma patients with acquired KRAS mutations[J]. Front Oncol, 2021, 11: 630256.
16
Díaz-Serrano A, Gella P, Jiménez E, et al. Targeting EGFR in lung cancer: Current standards and developments[J]. Drugs, 2018, 78(9): 893-911.
17
Liu K, Chen X, Wu L, et al. ID1 mediates resistance to osimertinib in EGFR T790M-positive non-small cell lung cancer through epithelial-mesenchymal transition[J]. BMC Pulmon Med, 2021, 21(1): 163.
18
Weng CH, Chen LY, Lin YC, et al. Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI[J]. Oncogene, 2019, 38(4): 455-468.
19
Jin H, Tang Y, Yang L, et al. Rab GTPases: Central coordinators of membrane trafficking in cancer[J]. Front Cell Development Biol, 2021, 9: 648384.
20
Liu J, Zheng X, Wu X. The Rab GTPase in the heart: Pivotal roles in development and disease[J]. Life Sci, 2022, 306: 120806.
21
Kiral FR, Kohrs FE, Jin EJ, et al. Rab GTPases and membrane trafficking in?neurodegeneration[J]. Current Biol: CB, 2018, 28(8): R471-R486.
22
Zhang X, Huang TY, Yancey J, et al. Role of rab GTPases in alzheimer’s disease[J]. ACS Chem Neurosci, 2019, 10(2): 828-838.
23
Liu N, Wu Z, Chen A, et al. SNRPB promotes the tumorigenic potential of NSCLC in part by regulating RAB26[J]. Cell Death Dis, 2019, 10(9): 667.
24
Ren H, Yang B, Li M, et al. RAB26 contributes to the progression of non-small cell lung cancer after being transcriptionally activated by SMAD3[J]. Bioengin, 2022, 13(4): 8064-8075.
25
Liu Q, Wang D, Xu Z, et al. Targeted delivery of rab26 siRNA with precisely tailored DNA prism for lung cancer therapy[J]. Chembiochem, 2019, 20(9): 1139-1144.
26
Zheng Y, Wu J, Chen H, et al. KLF4 targets RAB26 and decreases 5-FU resistance through inhibiting autophagy in colon cancer[J]. Cancer Biol Ther, 2023, 24(1): 2226353.
27
Liu H, Zhou Y, Qiu H, et al. Rab26 suppresses migration and invasion of breast cancer cells through mediating autophagic degradation of phosphorylated Src[J]. Cell Death Dis, 2021, 12(4): 284.
28
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?[J]. Nat Rev Cancer, 2014, 14(11): 709-721.
29
Chun KS, Kim DH, Surh YJ. Role of reductive versus oxidative stress in tumor progression and anticancer drug resistance[J]. Cells, 2021, 10(4): 758.
30
Zhang KR, Zhang YF, Lei HM, et al. Targeting AKR1B1 inhibits glutathione de novo synthesis to overcome acquired resistance to EGFR-targeted therapy in lung cancer[J]. Sci Translat Med, 2021, 13(614): eabg6428.
31
Meng Y, Lin W, Wang N, et al. Bazedoxifene-induced ROS promote mitochondrial dysfunction and enhance osimertinib sensitivity by inhibiting the p-STAT3/SOCS3 and KEAP1/NRF2 pathways in non-small cell lung cancer[J]. Free Rad Biol Med, 2023, 196: 65-80.
32
Wu D, Wang Y, Hu J, et al. Rab26 promotes macrophage phagocytosis through regulation of MFN2 trafficking to mitochondria [J]. FEBS J. 2023, 290(16):4023-4039.
33
Hennig P, Fenini G, Di Filippo M, et al. The pathways underlying the multiple roles of p62 in inflammation and cancer[J]. Biomed, 2021, 9(7): 707.
34
Baird L, Yamamoto M. The molecular mechanisms regulating the KEAP1-NRF2 pathway[J]. Mol Cell Biol, 2020, 40(13): e00099-20.
35
Zhu L, He S, Huang L, et al. Chaperone-mediated autophagy degrades Keap1 and promotes Nrf2-mediated antioxidative response[J]. Aging Cell, 2022, 21(6): e13616.
36
Ni Y, Liu J, Zeng L, et al. Natural product manoalide promotes EGFR-TKI sensitivity of lung cancer cells by KRAS-ERK pathway and mitochondrial Ca2+ overload-induced ferroptosis[J]. Front Pharmacol, 2023, 13: 1109822.
[1] 邓健, 王少华, 陈尊, 邹振庄. Keap1/Nrf2信号通路在脂多糖诱导宫内感染致新生鼠支气管肺发育不良的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 665-674.
[2] 杨文飞, 郝嘉文, 鲁梦远, 赵学刚, 李聪颖, 盖晨阳, 张晶, 张庆富. 高压电烧伤对大鼠心肌氧化应激的影响及N-乙酰半胱氨酸的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 106-112.
[3] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[4] 吕欣谕, 李雯, 王娟侠, 邹维, 王艳, 雷杰. 围手术期肺康复训练在胸腔镜肺叶切除术中疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 256-259.
[5] 陈羽霞, 柏佩梅, 芦遥遥. 综合干预对肺癌化疗患者的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 307-309.
[6] 胡航, 陈婷婷, 孙健, 孙云浩, 仇丽敏. 三维重建技术在单操作孔胸腔镜肺段切除术的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 310-312.
[7] 张剑, 卢从华, 李江华, 林采余, 吴迪, 王治国, 聂乃夫, 何勇, 李力. 根据转录组学分析奥希替尼获得性耐药机制的研究[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 195-200.
[8] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[9] 张蕊, 李敏, 饶建玲. 肺癌患者癌因性疲乏现状及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 111-114.
[10] 朱斯悦, 张晓莹, 严玉茹, 陈绯. 介入支气管镜在肺部疾病诊断和治疗中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 148-151.
[11] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[12] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[13] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[14] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[15] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
阅读次数
全文


摘要