切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (03) : 356 -362. doi: 10.3877/cma.j.issn.1674-6902.2024.03.003

论著

细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义
朱佑君1, 付万垒2, 毛杨3, 李德峰3,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院心内科
    2. 400037 重庆,陆军(第三)军医大学第二附属医院病理科
    3. 400037 重庆,陆军(第三)军医大学第二附属医院临床医学研究中心
  • 收稿日期:2024-02-17 出版日期:2024-06-25
  • 通信作者: 李德峰
  • 基金资助:
    国家自然科学基金资助项目(82002446)

Significance of extracellular matrix associated markers and fibroblasts in the progression of pulmonary arterial hypertension

Youjun Zhu1, Wanlei Fu2, Yang Mao3, Defeng Li3,()   

  1. 1. Department of Cardiology, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
    2. Department of Pathology, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
    3. Clinical Medical Research Center, Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
  • Received:2024-02-17 Published:2024-06-25
  • Corresponding author: Defeng Li
引用本文:

朱佑君, 付万垒, 毛杨, 李德峰. 细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 356-362.

Youjun Zhu, Wanlei Fu, Yang Mao, Defeng Li. Significance of extracellular matrix associated markers and fibroblasts in the progression of pulmonary arterial hypertension[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(03): 356-362.

目的

本文通过分析高通量基因表达及单细胞RNA测序数据,探讨肺动脉高压(pulmonaryarterial hypertension, PAH)患者组织中差异表达基因(differentially expressed genes, DEGs)及细胞间交流的特征,以揭示PAH的分子机制和细胞行为异质性。

方法

从NCBI的GEO数据库下载基因表达数据集GSE244830和单细胞表达数据集GSE228644。使用limma包进行差异基因分析,clusterProfiler包进行功能富集分析。单细胞数据采用Seurat包和monocle包分析细胞分群和拟时序变化。利用CellChat包分析细胞间交流。所有分析在R语言环境下完成。

结果

从GSE244830数据集中鉴定出81个显著的DEGs,其中70个在PAH组表现为上调,而11个则显示下调。明确PPI分析81个DEGs得到8个枢纽基因。富集结果显示差异基因主要涉及上皮细胞和内皮细胞的增殖等生物过程,参与调节糖蛋白的AGE-RAGE信号通路。单细胞细胞类型注释表明,16 430个细胞被划分为9个细胞类型,包括单核细胞、CD8 T细胞、脂肪细胞、自然杀伤(natural killer cell, NK)细胞、内皮细胞、上皮细胞、成纤维细胞、造血干细胞和巨噬细胞。单细胞拟时序分析结果表明,在PAH进展过程中,多个基因被激活,涉及包括细胞黏附、细胞骨架稳定及细胞介导的免疫反应。细胞通讯结果显示,成纤维细胞与脂肪细胞是PAH发展过程中的主要通讯细胞,尤其在COLLAGEN信号传导方面。

结论

细胞水平揭示PAH患者组织特异性的基因表达模式,为深入理解PAH的病理生理机制提供新的视角,有望为开发针对PAH治疗策略具有临床意义。

Objective

This study aims to explore the characteristics of differentially expressed genes (DEGs) and intercellular communication in the tissues of patients with pulmonary arterial hypertension (PAH) by analyzing high-throughput gene expression and single-cell RNA sequencing data. The ultimate goal is to unveil the molecular mechanisms and cellular behavior heterogeneity associated with PAH.

Methods

Gene expression datasets GSE244830 and single-cell expression dataset GSE228644 were downloaded from the GEO databaseof NCBI. Differential gene analysis was carried out using the limma package, and functional enrichment analysis using the clusterProfiler package. Single-cell data were analyzed for cell clustering and pseudotime trajectories using the Seurat and monocle packages, respectively. Intercellular communication was assessed with the CellChat package. All analyses were performed in the R programming environment.

Results

From the GSE244830 dataset, 81 significant DEGs were identified, with 70 upregulated and 11 downregulated in the PAH group. Further PPI analysis identified 8 hub genes fromthe 81 DEGs. Enrichment results showed that the DEGs are primarily involved in biological processes such as proliferation of epithelial and endothelial cells and participate in the regulation of the glycoprotein-mediated AGE-RAGE signaling pathway. Single-cell type annotation revealed that 16, 430 cells were classified into 9 cell types, including monocytes, CD8+ T cells, adipocytes, NK cells, endothelial cells, epithelial cells, fibroblasts, hematopoietic stem cells, and macrophages. The single-cell pseudotime analysis indicated activation of multiple genes during the progression of PAH, involving cellular adhesion, cytoskeletal stability, and cell-mediated immune response. The cell communication results highlighted that fibroblasts and adipocytes are the main communicative cells in the development of PAH, particularly in the COLLAGEN signaling pathway.

Conclusion

This study reveals tissue-specific gene expression patterns in PAH patients at the cellular level, providing new insights into the pathophysiological mechanisms of PAH, and holds potential clinical significance for developing targeted treatment strategies.

图1 差异基因表达与枢纽基因的识别。注:A:差异基因表达火山图;B:差异基因表达热图;C:正常组与PAH组主成分分析(PCA);D:差异基因的蛋白-蛋白互作(PPI)分析
图2 差异基因的富集分析。注:A:差异基因基因本体(GO)分析所设涉及生物过程(BP)结果展示;B:差异基因基因本体(GO)分析生物过程(BP),分子功能(MF)和细胞组分(CC)结果展示;C:差异基因京都基因与基因组百科全书(KEGG)分析结果;D:KEGG关键基因展示
图3 PAH细胞拟时序分析图。注:A、B:针对鉴定的核心细胞类型进行细胞轨迹和拟时序分析;C:所有细胞在不同时期的表达图谱;D:影响细胞分化的前10个基因在不同时间段的表达情况
图4 PAH细胞通讯网络图。注:A:细胞通讯网络相互作用数量(左)和相互作用强度(右)B:鉴定得到COLLAGEN信号通路;C:COLLAGEN信号通路在不同细胞中的通讯情况;D:细胞通讯中主要的发送者(源)和接收者(目标);E:COLLAGEN信号通路存在的多个受配体或信号通路介导的细胞间通讯;F:COLLAGEN信号通路单个配体-受体对介导的细胞-细胞通讯贡献度
1
任成山,卞士柱,胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2
Kovacs G, Dumitrescu D, Held M, et al. Definition, clinical classification and initial diagnosis of pulmonary hypertension: Updated recommendations from the Cologne Consensus Conference 2018[J]. Int J Cardiol, 2018, 272S: 11-19.
3
Paul MH. Pulmonary arterial hypertension[J]. N Engl J Med, 2021, 385(25): 2361-2376.
4
Eyries M, Montani D, Soubrier F, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension[J]. Nat Genet, 2014, 46(1): 65-69.
5
Wang T, Zheng X, Zeng HS, et al. Integrated bioinformatic analysis reveals YWHAB as a novel diagnostic biomarker for idiopathic pulmonary arterial hypertension[J]. J Cel Physiol, 2019, 234(5): 6449-6462.
6
Risbano MG, Meadows CA, Bull TM, et al. Altered immune phenotype in peripheral blood cells of patients with scleroderma-associated pulmonary hypertension[J].ClinTransl Sci, 2010, 3(5): 210-218.
7
Nasim MT, Ogo T, Machado RD, et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension[J]. Hum Mutat, 2011, 32(12): 1385-1389.
8
Ruopp NF, Cockrill BA. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14): 1379-1391.
9
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
10
Yu G, Wang LG, He QY, et al. Cluster profiler: An R package for comparing biological themes among gene clusters[J].OMICS, 2012, 16(5): 284-287.
11
Satija R, Farrell JA, Regev A, et al. Spatial reconstruction of single-cell gene expression data[J]. Nat Biotechnol, 2015, 33(5): 495-502.
12
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage[J]. Nat Immunol, 2019, 20(2): 163-172.
13
谢锦程,肖梦媛,陈建英,等. 肺动脉高压实验模型的研究进展[J]. 中国比较医学杂志2023, 33(9): 79-89.
14
陈晓毅,尹雪霞,刘 静,等. 阻塞性睡眠呼吸暂停低通气综合征并发肺动脉高压的危险因素及预测分析[J/CD]. 中华肺部疾病杂志(电子版), 2024, 17(1): 41-45.
15
张惠芳,方莲花,杜冠华. 免疫炎症反应在肺动脉高压中作用的研究进展[J]. 中国药理学通报2015, 31(11): 1481-1484.
16
Cracowski JL, Chabot F, Labarère J, et al. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension[J]. Eur Respir J, 2014, 43(3): 915-917.
17
马文德,苏晓灵,白玉婷. 巨噬细胞在肺动脉高压形成中的研究进展[J]. 心肺血管病杂志2024, 43(2): 207-210.
18
李菲菲,黄钰钦,陈若霞,等. 肺动脉高压相关线粒体自噬生物标志物及其作用的分析与验证[J]. 广西医科大学学报2024, 41(3): 419-429.
19
Luna-López R, Ruiz Martín A, EscribanoSubías P. Pulmonary arterial hypertension[J]. Med Clin(Barc), 2022, 158(12): 622-629.
20
Barman SA, Fulton D. Adventitial fibroblast Nox4 expression and ROS signaling in pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2017, 967: 1-11.
21
Tian L, Wu D, Dasgupta A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: A pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis[J]. Circ Res, 2020, 126(12): 1723-1745.
22
Thenappan T, Ormiston ML, Archer SL, et al. Pulmonary arterial hypertension:pathogenesis and clinical management[J]. BMJ, 2018, 360: j5492.
23
Chen L, Li M, Shen M, et al. Bioinformatics exploration of potential common therapeutic targets for systemic and pulmonary arterial hypertension-induced myocardial hypertrophy[J]. Acta BiochimBiophys Sin (Shanghai), 2023, 55(5): 831-841.
24
Jiao YR, Wang W, Lei PC, et al. 5-HTT,BMPR2,EDN1,ENG,KCNA5 gene polymorphisms and susceptibility to pulmonary arterial hypertension: A meta-analysis[J]. Gene, 2019, 680: 34-42.
25
Zhang W, Zhu T, Wu W, et al. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension[J]. Eur J Pharmacol, 2018, 818: 84-95.
26
Tam AYY, Horwell AL, Trinder SL, et al. Selective deletion of connective tissue growth factor attenuates experimentally-induced pulmonary fibrosis and pulmonary arterial hypertension[J]. Int J Biochem Cell Biol, 2021, 134: 105961.
27
Abid S, Marcos E, Parpaleix A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension[J]. Eur Respir J, 2019, 54(4): 1802308.
28
Jiang CY, Wu LW, Liu YW, et al. Identification of ACKR4 as an immune checkpoint in pulmonary arterial hypertension[J]. Front Immunol, 2023, 14: 1153573.
29
Samokhin AO, Stephens T, Wertheim BM, et al. NEDD9 targets COL3A1 to promote endothelial fibrosis and pulmonary arterial hypertension[J]. Sci Transl Med, 2018, 10(445): eaap7294.
30
王 琼,彭振辉,王万卷,等. RNAi对人类皮肤成纤维细胞COL1A1及COL3A1表达的影响[J]. 南方医科大学学报2008, 28(1): 1-6.
31
Ferrian S, Cao A, McCaffrey EF, et al. Single-cell imaging maps inflammatory cell subsets to pulmonary arterial hypertension vasculopathy[J]. Am J Respir Crit Care Med, 2024, 209(2): 206-218.
[1] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[2] 邱凌霄, 王创业, 卿斌, 刘锦程, 张鑫烨, 武文娟, 邢德冰, 郭亮, 徐智, 王斌. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 212-217.
[3] 张艺萱, 罗金丹, 葛小丽, 钟红琴. 先天性心脏病伴PH血清H-FABP、NT-proBNP与肺动脉内径、血流速度及PASP的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 252-255.
[4] 陈晓毅, 尹雪霞, 刘静, 邬国松. 阻塞性睡眠呼吸暂停低通气综合征并发肺动脉高压的危险因素及预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 41-45.
[5] 苏小慧, 宋新雅, 鱼帆, 丁小涵, 卞士柱. 高原肺动脉高压机制与药物治疗进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 742-747.
[6] 刘玉强, 吴秀秀, 李晓辉, 王瑜, 韩国霖, 张伟, 王俊芝, 侯春霞. 瑞舒伐他汀钙联合激素气道雾化对AECOPD并发肺动脉高压的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 670-672.
[7] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[8] 曾静, 范皎, 史镜琪, 刘静, 李春霖, 徐国纲, 李天志. 衰弱与非衰弱高龄老人外周血单个核细胞单细胞转录组特征差异分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 159-166.
[9] 吴欣, 袁晓晨, 沈慧, 秦建华. 三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究[J]. 中华临床医师杂志(电子版), 2024, 18(03): 259-267.
[10] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[11] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[12] 王金志, 陶新曹, 谢万木, 傅志辉, 赵蕴伟, 黄强, 翟振国. 球囊肺动脉成形术在慢性血栓栓塞性肺动脉高压治疗中的进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 262-267.
[13] 孟丽君, 宋芹, 邵莉, 李健. 系统性红斑狼疮合并肺动脉高压患者外周血T淋巴细胞亚群水平变化及临床意义[J]. 中华诊断学电子杂志, 2024, 12(01): 38-43.
[14] 王靖玺, 赵丽, 吕滨. 人工智能在肺栓塞CT检查中的临床研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 26-31.
[15] 张明杰, 柳立平, 李春香, 刘玉洁, 徐卓明. 先天性心脏病术后早期一氧化氮吸入治疗的有效性和安全性评价[J]. 中华心脏与心律电子杂志, 2023, 11(04): 210-215.
阅读次数
全文


摘要