切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 152 -157. doi: 10.3877/cma.j.issn.1674-6902.2021.02.004

论著

海水吸入型肺损伤中蛋白激酶SPAK的表达改变
李聪聪1, 薄丽艳2, 李艳燕3, 陈妍1,()   
  1. 1. 110016 沈阳,中国人民解放军北部战区总医院呼吸与危重症医学科
    2. 710038 西安,陕西省西安市胸科医院呼吸与危重症医学科
    3. 710038 西安,空军(第四)军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2020-11-02 出版日期:2021-04-25
  • 通信作者: 陈妍
  • 基金资助:
    国家自然科学基金青年项目(81900083& 81800076); 中国博士后科学基金第65批面上资助(2019M653911)

Seawater inhalation elevated the experssion of STE20/SPS1-related proline/alanine-rich kinase in seawater inhalation induced acute lung injury

Congcong Li1, Liyan Bo2, Yanyan Li3, Yan Chen1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, 110016, China
    2. Department of Respiratory and Critical Care Medicine, Chest Hospital of Xi′an, 710038, China
    3. Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Air Force Medical University, Xi′an, 710038, China
  • Received:2020-11-02 Published:2021-04-25
  • Corresponding author: Yan Chen
引用本文:

李聪聪, 薄丽艳, 李艳燕, 陈妍. 海水吸入型肺损伤中蛋白激酶SPAK的表达改变[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 152-157.

Congcong Li, Liyan Bo, Yanyan Li, Yan Chen. Seawater inhalation elevated the experssion of STE20/SPS1-related proline/alanine-rich kinase in seawater inhalation induced acute lung injury[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(02): 152-157.

目的

通过复制海水吸入引起的大鼠急性肺损伤模型,观察海水刺激对肺部炎症因子分泌、肺组织病理改变及肺组织中SPAK表达的影响。

方法

将健康雄性SD大鼠分为正常组,海水处理1 h组,海水处理3 h组,海水处理6 h组,海水处理12 h组。经气管滴注无菌海水复制海水吸入性肺损伤模型,并按照预设时间收集组织标本并检测肺组织湿干比、病理、炎性因子TNF-α、IL-1β以及SPAK的转录、翻译改变。

结果

海水吸入可以即刻引起血氧分压下降和二氧化碳分压升高,病理结果显示肺泡结构遭到破坏,肺泡壁断裂、增厚,中性粒细胞浸润,红细胞漏出等。ELISA结果显示海水刺激可引起肺内细胞分泌炎症因子TNF-α、IL-1β。海水吸入后SPAK蛋白表达明显增加,最高可达2.7倍左右(P<0.01),然后随着肺损伤病情的恢复,SPAK表达量逐渐下降。免疫组化染色结果显示海水吸入后SPAK表达明显升高,且广泛分布于细胞浆及细胞核。

结论

在高渗透压海水的刺激下肺组织细胞可以通过转录和翻译使SPAK表达增多,进而参与肺损伤时的炎症反应,加重了肺损伤程度。

Objective

To observe the effect of seawater stimulation on the secretion of inflammatory factors and the expression of STE20/SPS1-related proline/alanine-rich kinase (SPAK) in lung tissue of rats with seawater inhalation induced acute lung injury.

Methods

Sprague-Dawley (SD) rats were randomly divided into 5 groups: control group, 1 h, 3 h, 6 h and 12 h seawater challenged groups(n=5). After challenged by endotracheal instillation of seawater to establish lung injury models, the lung tissues samples were collected and the changes of lung tissue wet dry ratio, pathology, inflammatory factors TNF-α, IL-1β and SPAK transcription and translation were detected according to the plan.

Results

Inhalation of seawater could immediately cause a drop of blood oxygen pressure and an increase of carbon dioxide pressure. The pathological results showed that the alveolar structure was destroyed, the alveolar wall was broken and became thicken, and neutrophil infiltration, red blood cell leakage occurred. ELISA tests showed that seawater could induce the secretion of TNF-α and IL-1β. We also detect the expression of SPAK, and the results showed that the expression of SPAK increased significantly, up to 2.7 times (P<0.01), and then decreased gradually with the recovery of lung injury. Immunohistochemical staining showed that the elevated expression of SPAK was widely distributed in the cytoplasm and nucleus.

Conclusion

Challenged by the hypertonic stimulation of sea water, lung cells could increase the expression of SPAK through transcription and translation, and then participate in the modulating inflammatory response, which aggravates the degree of lung injury.

图1 海水吸入对大鼠血气分析结果的影响;注:N为正常对照组,SW为海水吸入组。**P<0.01 vs. N,*P<0.05 vs. N
图2 海水吸入对肺组织湿干比的影响;注:A组:正常对照组;B组:海水吸入1 h组;C组:海水吸入3 h组;D组:海水吸入6 h组;E组:海水吸入12 h组。***P<0.001 vs. A,**P<0.01 vs. A,*P<0.05 vs. A
图3 海水吸入对肺组织病理结果的影响(400×);注:A组:正常对照组;B组:海水吸入1 h组;C组:海水吸入3 h组;D组:海水吸入6 h组;E组:海水吸入12 h组
图4 海水吸入对肺组织病理结果的影响;注:A组:正常对照组;B组:海水吸入1 h组;C组:海水吸入3 h组;D组:海水吸入6 h组;E组:海水吸入12 h组。***P<0.001 vs. A, **P<0.01 vs. A, *P<0.05 vs. A, #P<0.05 vs. D
图5 海水吸入对肺组织SPAK蛋白表达的影响(400×);注:A:正常对照组;B组:海水吸入组
图6 海水吸入后肺组织SPAK表达的改变;注:A组:正常对照组;B组:海水吸入1 h组;C组:海水吸入3 h组;D组:海水吸入6 h组;E组:海水吸入12 h组。**P<0.01 vs. A,*P<0.05 vs. A, #P<0.05 vs. D
图7 海水吸入后肺组织SPAK转录的改变;注:A组:正常对照组;B组:海水吸入1 h组;C组:海水吸入3 h组;D组:海水吸入6 h组;E组:海水吸入12 h组。***P<0.001 vs. A,**P<0.01 vs. A, ##P<0.01 vs. D
1
van Beeck EF, Branche CM, Szpilman D, et al. A new definition of drowning: towards documentation and prevention of a global public health problem[J]. Bull World Health Organ, 2005, 83(11): 853-856.
2
Zhang M, Gao Y, Zhao W, et al. ACE-2/ANG1-7 ameliorates ER stress-induced apoptosis in seawater aspiration-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(6): L1015-L1027.
3
Li PC, Wang BR, Li CC, et al. Seawater inhalation induces acute lung injury via ROS generation and the endoplasmic reticulum stress pathway[J]. Int J Mol Med, 2018, 41(5): 2505-2516.
4
Huang H, Song S, Banerjee S, et al. The WNK-SPAK/OSR1 Kinases and the cation-chloride cotransporters as therapeutic targets for neurological diseases[J]. Aging Dis, 2019, 10(3): 626-636.
5
Thomson MN, Cuevas CA, Bewarder TM, et al. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia[J]. Am J Physiol Renal Physiol, 2020, 318(1): F216-F228.
6
Huang H, Song S, Banerjee S, et al. The WNK-SPAK/OSR1 Kinases and the cation-chloride cotransporters as therapeutic targets for neurological diseases[J]. Aging Dis, 2019, 10(3): 626-636.
7
Lin TJ, Yang SS, Hua KF, et al. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-kappaB/MAPKs signaling pathway[J]. Free Radic Biol Med, 2016, 99: 214-224.
8
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium[J]. Am J Physiol Renal Physiol, 2018, 315(4): F903-F907.
9
Li C, Bo L, Li P, et al. Losartan, a selective antagonist of AT1 receptor,attenuates seawater inhalation induced lung injury via modulating JAK2/STATs and apoptosis in rat[J]. Pulm Pharmacol Ther, 2017, 45: 69-79.
10
Li C, Bo L, Liu Q, et al. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury[J]. Mol Med Rep, 2016, 13(3): 1989-1998.
11
Conover K, Romero S. Drowning prevention in pediatrics[J]. Pediatr Ann, 2018, 47(3): e112-e117.
12
Tellier E, Simonnet B, Gil-Jardine C, et al. Predicting drowning from sea and weather forecasts: development and validation of a model on surf beaches of southwestern France[J]. Inj Prev, 2021, DOI: 10.1136/injuryprev-2020-044092.
13
Caylan N, Yalcin SS, Tezel B, et al. Evaluation of injury-related under-five mortality in Turkey between 2014-2017[J]. Turk J Pediatr, 2021, 63(1): 37-47.
14
Jin F, Li C. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments[J]. Exp Ther Med, 2017, 13(6): 2591-2598.
15
Zhang M, Yan X, Liu W, et al. Endothelial semaphorin 7A promotes seawater aspiration-induced acute lung injury through plexin C1 and beta1 integrin[J]. Mol Med Rep, 2017, 16(4): 4215-4221.
16
Liu Z, Zhang B, Wang XB, et al. Hypertonicity contributes to seawater aspiration-induced lung injury: Role of hypoxia-inducible factor 1alpha[J]. Exp Lung Res, 2015, 41(6): 301-315.
17
Mukherjee A, Yang CL, McCormick JA, et al. Roles of WNK4 and SPAK in K(+) mediated dephosphorylation of the sodium chloride cotransporter[J]. Am J Physiol Renal Physiol, 2021, DOI: 10.1152/ajprenal.00459.2020.
18
Lan CC, Peng CK, Tang SE, et al. Inhibition of Na-K-Cl cotransporter isoform 1 reduces lung injury induced by ischemia-reperfusion[J]. J Thorac Cardiovasc Surg, 2017, 153(1): 206-215.
19
Shen CH, Lin JY, Lu CY, et al. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure[J]. BMC Pulm Med, 2021, 21(1): 58.
20
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium[J]. Am J Physiol Renal Physiol, 2018, 315(4): F903-F907.
21
Josiah SS, Meor AN, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke[J]. Int J Mol Sci, 2021, DOI: 10.3390/ijms22031232.
22
Chan CH, Wu SN, Bao BY, et al. MST3 Involvement in Na(+) and K(+) Homeostasis with Increasing Dietary Potassium Intake[J]. Int J Mol Sci, 2021, DOI: 10.3390/ijms22030999.
23
Hung CM, Peng CK, Yang SS, et al. WNK4-SPAK modulates lipopolysaccharide-induced macrophage activation[J]. Biochem Pharmacol, 2020, 171: 113738.
24
Zimmerman JJ. Molecular biology Ying Yang in alveolar fluid clearance[J]. Crit Care Med, 2015, 43(10): 2270-2271.
25
Hung CM, Peng CK, Yang SS, et al. WNK4-SPAK modulates lipopolysaccharide-induced macrophage activation[J]. Biochem Pharmacol, 2020, 171: 113738.
26
Wu CP, Huang KL, Peng CK, et al. Acute hyperglycemia aggravates lung injury via activation of the SGK1-NKCC1 pathway[J]. Int J Mol Sci, 2020, 21(13): DOI: 10.3390/ijms21134803.
27
Wu D, Lai N, Deng R, et al. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway[J]. Exp Neurol, 2020, 332: 113386.
28
Lin TJ, Yang SS, Hua KF, et al. SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-kappaB/MAPKs signaling pathway[J]. Free Radic Biol Med, 2016, 99: 214-224.
29
Maruyama J, Kobayashi Y, Umeda T, et al. Osmotic stress induces the phosphorylation of WNK4 Ser575 via the p38MAPK-MK pathway[J]. Sci Rep, 2016, 6: 18710.
30
Yan Y, Dalmasso G, Nguyen H T, et al. Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function[J]. PLoS One, 2009, 4(4): e5049.
[1] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[2] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[3] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 胡宗俊, 陈建国, 黄霞. ARDS机械通气继发肺栓塞危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 388-390.
[6] 张松涛, 李世金, 凌霄, 吴文辉. 胸部物理治疗联合布地奈德雾化对多发伤患者并发ARDS的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 373-375.
[7] 谭林, 蒲运刚, 朱顺, 杨希. 急性呼吸窘迫综合征患者血清FGF21、ANGPTL4、HO-1表达及其临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 227-229.
[8] 马娟娟, 陈雪玲, 王蕾. ARDS患者救治中有创呼吸机辅助呼吸的临床干预及疗效分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 876-878.
[9] 胡宗俊, 岳希, 黄霞. 肺段肺复张对急性呼吸窘迫综合征患者预后的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 796-800.
[10] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[11] 吴梅清, 林瑾, 段美丽, 薛晓艳. 高密度脂蛋白水平对脓毒症相关的ARDS发生的影响[J]. 中华重症医学电子杂志, 2023, 09(02): 191-197.
[12] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[13] 尹承芬, 徐磊. 再议俯卧位通气的时机[J]. 中华重症医学电子杂志, 2023, 09(01): 9-13.
[14] 陈栋玉, 潘纯, 杨毅. ARDS患者自主呼吸努力评估方法的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 84-88.
[15] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
阅读次数
全文


摘要