切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 158 -163. doi: 10.3877/cma.j.issn.1674-6902.2021.02.005

论著

支气管腔内超声图像评分系统在肺结节良恶性诊断中的应用
王梦1, 陈众众1, 刘颖1, 闫文锦1, 李一然1, 王玉秀1, 许文景1, 姚汉清1, 朱湘平1, 徐兴祥1, 闵凌峰1,()   
  1. 1. 225001 扬州,扬州大学医学院附属苏北人民医院呼吸与危重症医学科·南京大学医学院附属苏北医院·大连医科大学附属苏北医院
  • 收稿日期:2020-11-25 出版日期:2021-04-25
  • 通信作者: 闵凌峰
  • 基金资助:
    国家自然科学基金资助项目(81870033)

Application value of the scoring system based on endobronchial ultrasound image in the diagnosis of pulmonary nodules

Meng Wang1, Zhongzhong Chen1, Ying Liu1, Wenjin Yan1, Yiran Li1, Yuxiu Wang1, Wenjing Xu1, Hanqing Yao1, Xiangping Zhu1, Xingxiang Xu1, Lingfeng Min1,()   

  1. 1. The Department of Respiratory and Critical Care Medicine of North Jiangsu People′s Hospital affiliated to Yangzhou University Medical College, North Jiangsu Hospital affiliated to Nanjing University Medical College, North Jiangsu Hospital affiliated to Dalian Medical University, Yangzhou 225001, China
  • Received:2020-11-25 Published:2021-04-25
  • Corresponding author: Lingfeng Min
引用本文:

王梦, 陈众众, 刘颖, 闫文锦, 李一然, 王玉秀, 许文景, 姚汉清, 朱湘平, 徐兴祥, 闵凌峰. 支气管腔内超声图像评分系统在肺结节良恶性诊断中的应用[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 158-163.

Meng Wang, Zhongzhong Chen, Ying Liu, Wenjin Yan, Yiran Li, Yuxiu Wang, Wenjing Xu, Hanqing Yao, Xiangping Zhu, Xingxiang Xu, Lingfeng Min. Application value of the scoring system based on endobronchial ultrasound image in the diagnosis of pulmonary nodules[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(02): 158-163.

目的

建立基于支气管腔内超声(EBUS)图像的评分系统从而判别肺结节良恶性。

方法

回顾性纳入自2018年5月1日至2020年3月1日期间于苏北人民医院气管镜室行气管镜检查的患者资料,所有患者胸部计算机断层扫描(computer tomography, CT)检查见肺部≤3 cm的肺结节而行常规支气管镜检查未见明显异常。使用超声探头引导下在病变处进行活检与刷检协助诊断,未能明确诊断者行进一步侵袭性操作或治疗后随访观察至少3个月获得最终诊断。分析镜下超声图像形态特征,包括病灶外形、边缘、边界、内部回声强弱、内部回声同质或异质、支气管充气征、不规则无回声区、同心圆影8种不同EBUS图像特点与病灶良恶性的关系,建立简易评分系统,使用SPSS软件分析处理数据。

结果

114例肺结节患者中,良性病变65例,恶性病变49例。EBUS图像中的三种图像特征,包括病灶圆形或类圆形外形、边缘不连续、病灶异质性,差异有统计学意义(P<0.05);根据建立的简易评分系统,绘制ROC曲线,当评分以7为界点时,敏感度(65.3%)和特异度(78.5%)最高,以该点为最佳诊断点;当评分≥7时,诊断肺恶性病变的准确率较高。计算Kappa一致性:系数为0.441(95%CI为0.274~0.607,P<0.01),具有中等强度一致性。

结论

EBUS图像特征可用于鉴别肺结节良恶性,基于该图像的评分系统在鉴别肺结节良恶性中有较好的应用价值。

Objective

To attempt to develop a simple scoring system based on images of endobronchial ultrasound (EBUS) to discriminate between benign and malignant pulmonary nodules.

Methods

data of patients who undergone bronchoscopy in the Bronchoscopy Room of North Jiangsu People′s Hospital during May 1, 2018 and March 1, 2020 were retrospectively included. all of the patients′chest CT scan showed pulmonary nodules ≤3 cm, while routine bronchoscopy showed no obvious abnormalities. Ultrasound probe guided biopsy and brush examination were used to assist in the diagnosis of the disease. Patients with no definite diagnosis were further subjected to invasive surgeries or observations after the treatment for at least 3 months to obtain the final diagnosis. Eight different EBUS image characteristics including lesion shape, margin, border, internal echo strength, homogeneous, or heterogeneous internal echoe, air bronchogram, irregular anechoic area, concentric circles were observed, and the relationship between these image characteristics and the nature of pulmonary nodules were analyzed, a simple scoring system was established, datas were analyzed using SPSS software.

Results

Among 114 patients with pulmonary nodules, 65 were benign and 49 were malignant. Three image features in EBUS images, including round or round shape of lesions, discontinuous margin, and heterogeneous echogenicity, with statistically significant (P<0.05). According to the simple scoring system established, ROC curve was drawn. When the score was set at 7, the sensitivity (65.3%) and specificity (78.5%) were the highest, and this was the best point for diagnosis. When the score is≥7, the diagnosis of pulmonary malignant lesions was more accurate. Kappa consistency was calculated with a coefficient of 0.441 (95%CI 0.274-0.607, P<0.01), showing moderate strength consistency.

Conclusion

EBUS can provide image characteristic information to differentiate the nature of pulmonary nodules, and the scoring system based on the images has a good application value in differentiating benign from malignant pulmonary nodules.

图1 支气管腔内超声回声特征图片
表1 肺结节的8种超声回声特征单因素分析
表2 超声特征对肺部良恶性结节的预测价值
表3 根据评分系统计算各例肺结节总分
图2 评分系统判别肺结节性质的ROC曲线
表4 评判方程所得结果与病理结果比较
1
Jemal A, Bray F, Center MM, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2): 69-90.
2
Khan T, Usman Y, Abdo T, et al. Diagnosis and management of peripheral lung nodule[J]. Ann Transl Med, 2019, 7(15): 348.
3
National Lung Screening Trial Research Team, Timothy RC, Black William C, et al. Results of initial low-dose computed tomographic screening for lung cancer[J]. N Engl J Med, 2013, 368(21): 1980-1991.
4
Rebecca K, Sixto A, Lonny Y, et al. Diagnosis and management of pulmonary nodules[J]. Expert Rev Respir Med, 2014, 8(6): 677-691.
5
Wang W, Yu L, Wang Y, et al. Radial EBUS versus CT-guided needle biopsy for evaluation of solitary pulmonary nodules[J]. Oncotarget, 2018, 9(19): 15122-15131.
6
Tsukasa I, Alexander G, Terunaga I, et al. Bronchoscopic navigation and tissue diagnosis[J]. Gen Thorac Cardiovasc Surg, 2020, 68(7): 672-678.
7
Takehiro I, Sasada S, Chavez C, et al. Radial endobronchial ultrasound images for ground-glass opacity pulmonary lesions[J]. Eur Respir J, 2015, 45(6): 1661-1668.
8
Shigenari O, Takiguchi Y, Hiroshima K, et al. Peripheral pulmonary diseases: evaluation with endobronchial US initialexperience[J]. Radiology, 2002, 224(2): 603-608.
9
Felix H, Ernst A, Schulz M, et al. Endobronchial ultrasound reliably differentiates between airway infiltration and compression by tumor[J]. Chest, 2003, 123(2): 458-462.
10
张 蕾,李 蒙,贺 舜,等. 支气管内超声结合引导鞘对肺磨玻璃密度影的诊断价值[J]. 中华结核和呼吸杂志,2017, 40(11): 845-849.
11
Noriaki K, Murayama M, Yoshioka S, et al. Analysis of the internal structure of peripheral pulmonary lesions using endobronchial ultrasonography[J]. Chest, 2002, 122(6): 1887-1894.
12
Taiki F, Yasufuku K, Nakajima T, et al. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: a standard endobronchial ultrasound image classification system[J]. Chest, 2010, 138(3): 641-647.
13
Chao TY, Lie CH, Chung YH, et al. Differentiating peripheral pulmonary lesions based on images of endobronchial ultrasonography[J]. Chest, 2006, 130(4): 1191-1197.
14
Kuo CH, Lin SM, Chen HC, et al. Diagnosis of peripheral lung cancer with three echoic features via endobronchial ultrasound[J]. Chest, 2007, 132(3): 922-929.
15
Lie CH, Chao TY, Chung YH, et al. New image characteristics in endobronchial ultrasonography for differentiating peripheral pulmonary lesions[J]. Ultrasound Med Biol, 2009, 35(3): 376-381.
16
黄 禹,陈正贤,任红岩,等. 支气管内超声两种回声特征在判断肺部周围型病灶良恶性中的应用[J]. 南方医科大学学报,2012, 32(7): 1016-1019.
17
Herth FJF, Eberhardt R, Becker HD, et al. Endobronchial ultrasound-guided transbronchial lung biopsy in fluoroscopicallyinvisible solitary pulmonary nodules: a prospective trial[Z]. 2006: 129, 147-150.
18
谭旭艳,张 婷,李 明. 经支气管超声诊断肺结节性病变[J]. 中国医学影像技术,2014, 30(11): 1654-1656.
19
黄 禹,任红岩,何碧芳,等. 气管内超声非实时引导下经气管镜肺活检对肺周围型病变的诊断价值[J]. 中华结核和呼吸杂志,2013, 36(1): 12-16.
20
Baba M, Sekine Y, Suzuki M, et al. Correlation between endobronchial ultrasonography (EBUS) images and histologicfindings in normal and tumor-invaded bronchial wall[Z]. 2002: 35, 65-71.
21
Kurimoto N, Murayama M, Yoshioka S, et al. Assessment of usefulness of endobronchial ultrasonography in determination of depth of tracheobronchial tumor invasion[J]. Chest, 1999, 115(6): 1500-1506.
22
何正强,傅应云,李亚珍,等. 支气管腔内超声特征对肺部结节良恶性的预测价值[J]. 国际呼吸杂志,2018, 38(22): 1703-1707.
23
李 静,陈正贤. 周围型肺癌支气管内超声支气管充气征及其病理学基础[J]. 中国肺癌杂志,2010, 13(5): 424-431.
24
Arash B, Nguyen P, Jersmann H, et al. Radial endobronchial ultrasound greyscale texture analysis using whole-lesion analysis can characterise benign and malignant lesions without Region-of-interest selection bias[J]. Respiration, 2019, 97(1): 78-83.
25
Phan N, Bashirzadeh F, Hundloe J, et al. Grey scale texture analysis of endobronchial ultrasound mini probe images for prediction of benign or malignant aetiology.[J]. Respirology (Carlton, Vic.), 2015, 20(6): 960-966.
[1] 陈经欣, 李梅, 陈洁雅. 肺结节胸腔镜术后肺部感染危险因素分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 238-243.
[2] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[3] 孙志红, 庞红艳, 王睿. 呼出气体中VOCs联合CT征象诊断非实性肺结节的临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 442-445.
[4] 解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.
[5] 沙敏, 瞿秋霞, 朱卫东, 陈成. 肺结核与肺结节病相关肉芽肿组织中CXCR5的差异性表达[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 189-194.
[6] 段丽君, 董鑫, 潘若楠, 任梦然, 卢晓倩, 曹殿波. 术前误诊良性肺结节与典型恶性肺结节临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 46-50.
[7] 邹明珠, 蓝博文, 林观兰, 代海洋. 螺旋CT形态学特征在肺结节良恶性诊断中的临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 729-730.
[8] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[9] 蒋丽, 王晓慧, 李维益, 苟双芸, 丁敏, 杨丽. 创新智能健康教育与随访管理对肺结节患者焦虑的影响随机对照研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 485-489.
[10] 王洪武, 方碧霞. 基于人工智能探讨多发性肺结节的诊治策略[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 301-305.
[11] 李华娟, 唐英俊, 王赛妮, 徐旺, 林玲, 李羲, 黄华萍. 肺结节临床与CT影像学特征分析及良恶性预测模型构建[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 318-323.
[12] 陈冀, 邓才霞, 张厚丽, 祝冰晶, 刘攀, 何建, 唐春兰, 周向东, 罗虎. 高危肺结节患者认知及焦虑状况调查分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 164-168.
[13] 赵志鹏, 马永富, 冯长江, 张猛, 刘阳. 以肺亚段为解剖单位的精准肺外科手术策略的初步报道[J]. 中华腔镜外科杂志(电子版), 2023, 16(02): 85-90.
[14] 王宇, 张泽锴, 吴明胜, 王高祥, 孙效辉, 王君, 徐美青, 李田, 徐世斌, 解明然. 术后病理诊断为良性肺结节323例患者临床特征分析[J]. 中华胸部外科电子杂志, 2024, 11(03): 167-174.
[15] 刘云泽, 李宬润, 任红, 郭俊唐, 刘阳. CT影像组学在肺结节鉴别诊断中的价值[J]. 中华胸部外科电子杂志, 2024, 11(02): 120-129.
阅读次数
全文


摘要