切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (04) : 539 -542. doi: 10.3877/cma.j.issn.1674-6902.2021.04.040

综述

姜黄素在肺部炎症性疾病中的免疫调节作用
顾艳利1, 宋勇1,(), 张方1,()   
  1. 1. 210002 南京,南京医科大学金陵临床医学院东部战区总医院呼吸内科
  • 收稿日期:2021-01-13 出版日期:2021-08-25
  • 通信作者: 宋勇, 张方

Immunomodulatory effects of curcumin in pulmonary inflammatory diseases

Yanli Gu1, Yong Song1(), Fang Zhang1()   

  • Received:2021-01-13 Published:2021-08-25
  • Corresponding author: Yong Song, Fang Zhang
引用本文:

顾艳利, 宋勇, 张方. 姜黄素在肺部炎症性疾病中的免疫调节作用[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 539-542.

Yanli Gu, Yong Song, Fang Zhang. Immunomodulatory effects of curcumin in pulmonary inflammatory diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(04): 539-542.

1
Yadav D, Yadav SK, Khar RK, et al. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities[J]. Int J Green Pharmacy, 2013, 7(2): 9-85.
2
Singh S. From exotic spice to modern drug?[J]. cell, 2007, 130(5): 765-768.
3
Kunnumakkara AB, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases[J]. Br J Pharmacol, 2017, 174(11): 1325-1348.
4
Yu X, Yu S, Chen L, et al. Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKTand NF-κappa B signaling pathways[J]. Biomed Pharmacother, 2016, 82: 489-497.
5
Faller S, Strosing KM, Ryter SW, et al.The volatile anesthetic isoflurane prevents ventilator-induced lung injury via phosphoinositide 3-kinase/Akt signaling in mice[J]. Anesth Analg, 2012, 114(4): 747-756.
6
Cheifetz IM. Year in review 2015: Pediatric ARDS[J]. Respir Care,2016, 61(7): 980-985.
7
Ding Q, Liu GQ, Zeng YY, et al. Role of IL-17 in LPS-induced acute lung injury: An in vivo study[J]. Oncotarget, 2017, 8(55): 93704-11.
8
Wang X, Song S, Hu Z, et al. Activation of Epac alleviates inflammation and vascular leakage in LPS-induced acute murine lung injury[J]. Biomed Pharmacother, 2017, 96: 1127-36.
9
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome[J]. Clin Invest, 2012, 122(8): 2731-2740.
10
Zhang Y, Liu Z, Wu J, et al. New MD2 inhibitors derived from curcumin with improved anti-inflammatory activity[J]. Eur J Med Chem, 2018, 148: 291-305.
11
Chai YS, Chen YQ, Lin SH, et al. Curcumin regulates the differentiation of naïve CD4+ T cells and activates IL-10 immune modulation against acute lung injury in mice[J]. Biomed Pharmacother, 2020, 125: 109946.
12
Cheng K, Yang A, Hu X, et al. Curcumin attenuates pulmonary inflammation in lipopolysaccharide induced acute lung injury in neonatal rat model by activating peroxisome proliferator-activated receptor γ (PPARγ) pathway[J]. Med Sci Monit, 2018, 24: 1178-1184.
13
Tsoyi K, Jang HJ, Nizamutdinova IT, et al. Metformin inhibits HMGB1 release in LPS-treated RAW 264.7 cells and increases survival rate of endotoxaemic mice[J]. Br J Pharmacol, 2011, 162(7): 1498-508.
14
Bae HB, Zmijewski JW, Deshane JS, et al. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils[J]. FASEB J, 2011, 25(12): 4358-368.
15
Zhao X, Zmijewski JW, Lorne E, et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2008, 295(3): L497-504.
16
Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling[J]. Circ Res, 2007, 100(3): 328-341.
17
Wang S, Song P, Zou MH. AMP-activated protein kinase, stress responses and cardiovascular diseases[J]. Clin Sci (Lond), 2012, 122(12): 555-573.
18
Ji G, Zhang Y, Yang Q, et al. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-κB following AMP kinase activation in RAW 264.7 macrophages[J]. PLoS One, 2012, 7(12): e53101.
19
Kim J, Jeong SW, Quan H, et al. Effect of curcumin (Curcuma longa extract) on LPS-induced acute lung injury is mediated by the activation of AMPK[J]. J Anesth, 2016, 30(1): 100-108.
20
Xu F, Diao R, Liu J, et al. Curcumin attenuates staphylococcus aureus-induced acute lung injury[J]. Clin Respir J, 2015, 9(1): 87-97.
21
Xu Y, Liu L. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway[J]. Influenza Other Respir Viruses, 2017, 11(5): 457-463.
22
Sun J, Yang D, Li S, et al. Effects of curcumin or dexamethasone on lung ischaemia-reperfusion injury in rats[J]. Eur Respir J, 2009, 33(2): 398-404.
23
Sun J, Guo W, Ben Y, et al. Preventive effects of curcumin and dexamethasone on lung transplantation-associated lung injury in rats[J]. Crit Care Med, 2008, 36(4): 1205-1213.
24
Wang X, An X, Wang X, et al. Curcumin ameliorated ventilator-induced lung injury in rats[J]. Biomed Pharmacother, 2018, 98: 754-761.
25
EliasJA, LeeCG, ZhengT, et al. New insights into the pathogenesis of asthma[J]. J Clin Invest, 2003, 111(3): 291-297.
26
Compalati E, Braido F, Canonica GW. An update on allergen immunotherapy and asthma[J]. Curr Opin Pulm Med, 2014, 20(1): 109-117.
27
Zhu T, Zhang W, Wang DX, et al. Rosuvastatin attenuates mucus secretion in a murine model of chronic asthma by inhibiting the gamma-aminobutyric acid type a receptor[J]. Chin Med J, 2012, 125(8): 1457-1464.
28
Gavino AC, Nahmod K, Bharadwaj U, et al. STAT3 inhibition prevents lung inflammation, remodeling, and accumulation of Th2 and Th17 cells in a murine asthma model[J]. Allergy, 2016, 71(12): 1684-1692.
29
Kumari A, Singh DK, Dash D, et al. Intranasal curcumin protects against LPS-induced airway remodeling by modulating toll-like receptor-4 (TLR-4) and matrixmetalloproteinase-9 (MMP-9) expression via affecting MAP kinases in mouse model[J]. Inflammo Pharma Cology, 2019, 27(4): 731-748.
30
Yang X, Lv JN, Li H, et al. Curcumin reduces lung inflammation via wnt/β-catenin signaling in mouse model of asthma[J]. J Asthma, 2017, 54(4): 335-340.
31
Zhu T, Chen ZH, Chen GH, et al. Curcumin attenuates asthmatic airway inflammation and mucus hypersecretion involving a PPARγ-dependent NF-κB signaling pathway in vivo and in vitro[J]. Mediators Inflamm, 2019: 4927430.
32
Chong L, Zhang W, Nie Y, et al. Protective effect of curcumin on acute airway inflammation of allergic asthma in mice through Notch1-GATA3 signaling pathway[J]. Inflammation, 2014, 37(5): 1476-1485.
33
Brewer JM, Conacher M, Hunter CA. Aluminium hydroxide adjuvantinitiates strong antigen-specific Th2 responses in the absence of IL-4-orIL-13-mediated signaling[J]. J Immunol, 1999, 163(12): 6448-6454.
34
Ma CH, Ma ZQ, Fu Q, et al. Curcumin attenuates allergic airway inflammation by regulation of CD4+ CD25+ regulatory T cells (Tregs)/Th17 balance in ovalbumin-densitized Mice[J]. Fitoterapia, 2013, 87: 57-64.
35
ConroyDM, Williams TJ. Eotaxin and the attraction of eosinophils to the asthmatic lung[J]. Respir Res, 2001, 2(3): 150-156.
36
AcevesSS, Newbury RO, Dohil MA, et al. A symptom scoring tool for identifying pediatric patients with eosinophilic esophagitis and correlating symptoms with inflammation[J]. Ann Allergy Asthma Immunol, 2009, 103(5): 401-406.
37
Bodas M, Patel N, Silverberg D, et al. Master autophagy regulator Transcription factor-EB (TFEB) regulatescigarette smoke induced autophagy-impairment and COPD-emphysema pathogenesis[J]. Antioxid Redox Signal, 2017, 27(3): 150-167.
38
Wu S, Xiao D. Effect of curcumin on nasal symptoms and airflow in patients withperennial allergic rhinitis[J]. Ann Allergy Asthma Immunol, 2016, 117(6): 697-702.
39
Dhillon B, Aggarwal BB, Newman RA, et al. Phase Ⅱ trial of curcumin in patients with advanced pancreatic cancer[J]. Clin Cancer Res, 2008, 14(14): 4491-4499.
40
Chuang EY, Lin KJ, Huang TY, et al. An intestinal "Transformers" -like nanocarrier system for enhancing the oral bioavailability of poorly water-soluble drugs[J]. ACS Nano, 2018, 12(7): 6389-6397.
[1] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[2] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[5] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[6] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[7] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[8] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[9] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[10] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[11] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[12] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[13] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要