切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 146 -150. doi: 10.3877/cma.j.issn.1674-6902.2022.02.002

论著

通过NF-κB调控蛋白激酶SPAK通路促进NR8383细胞炎症介质释放及氧化应激发生
陈妍1, 薄丽艳2, 李聪聪1,()   
  1. 1. 110001 沈阳,中国人民解放军北部战区总医院呼吸与危重症医学科
    2. 710100 西安,陕西省西安市胸科医院呼吸与危重症医学科
  • 收稿日期:2021-09-11 出版日期:2022-04-25
  • 通信作者: 李聪聪
  • 基金资助:
    国家自然科学基金青年项目(81900083&81800076); 中国博士后科学基金第65批面上资助(2019M653911)

NF-κB regulates the release of inflammatory mediators and occurrence of oxidative stress in NR8383 cells through SPAK pathway

Yan Chen1, Liyan Bo2, Congcong Li1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang 110016, China
    2. Department of Respiratory and Critical Care Medicine, Xi′an chest Hospital of Shanxi Province 710100, China
  • Received:2021-09-11 Published:2022-04-25
  • Corresponding author: Congcong Li
引用本文:

陈妍, 薄丽艳, 李聪聪. 通过NF-κB调控蛋白激酶SPAK通路促进NR8383细胞炎症介质释放及氧化应激发生[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 146-150.

Yan Chen, Liyan Bo, Congcong Li. NF-κB regulates the release of inflammatory mediators and occurrence of oxidative stress in NR8383 cells through SPAK pathway[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 146-150.

目的

分析SPAK在高渗透压应激所致大鼠肺泡世噬细胞系(NR8383)细胞炎症介质释放及氧化应激发生中的作用。

方法

在细胞培养液中加入核因子κB(nuclear factor κappa-B, NF-κB)的抑制剂吡咯烷二硫代氨基甲盐酸(1-Pyrrolidinecarbodithioic acid, PDTC)阻断其磷酸化,检测其对高渗刺激引起的SPAK表达升高的抑制作用。通过siRNA干扰技术下调SPAK的表达,检测NR8383细胞炎症介质TNF-α和IL-1的分泌以及MPO活性和LDH释放,阐明SPAK在细胞应对高渗透压刺激时的调控作用。

结果

高渗透压刺激可以导致NR8383细胞中的NF-κB的磷酸化并上调SPAK蛋白表达,而通过对NR8383细胞进行PDTC预处理,NF-κB的磷酸化及SPAK蛋白表达水平可以显著受到抑制。而SPAK表达下调可以减轻高渗刺激所致的炎症因子释放增加,降低MPO活性以及H2O2浓度。

结论

磷酸化NF-κB可以调控SPAK转录及翻译,而SPAK可以通过促进炎性介质释放、诱导氧化应激参与到高渗透压刺激的调控中。

Objective

To investigate the role of STE20/SPS1-related proline/alanine-rich kinase (SPAK) in the release of inflammatory mediators and occurrence of oxidative stress in rat alveolar macrophage cells(NR8383) cells exposed hyperosmotic stress.

Methods

1-Pyrrolidinecarbodithioic acid (PDTC), a specific inhibitor of NF-κB, was added to inhibit its phosphorylating, and the increase of SPAK expression induced by hypertonic stimulation was also detected. After down regulating the expression of SPAK in NR8383 cells by siRNA interference technology, the secretion of TNF-α and IL-1, MPO activity and H2O2 concentration were detected, which further elucidated the role of SPAK in hyperosmotic stress regulation.

Results

PDTC pretreatment significantly inhibited the phosphorylation of NF-κB and the expression of SPAK protein in NR8383 cells. However, the down-regulation of SPAK expression could reduce the increased release of inflammatory factors, MPO activity and H2O2 concentration caused by hypertonic stimulation.

Conclusion

The transcription of SPAK is regulated by the activation of NF-κB, and plays an important role in promoting the inflammatory response, the release of inflammatory mediators and occurrence of oxidative stress.

图1 海水刺激及PDTC预处理对NR8383细胞NF-κB磷酸化及SPAK表达的影响。注:A:海水刺激及PDTC预处理对NF-κB磷酸化的影响;B:PDTC预处理及海水高渗透压刺激对SPAK转录的影响;C:海水刺激及PDTC预处理对SPAK蛋白表达的影响;N为正常对照组,SW为高渗透压海水刺激组,SW+PDTC为PDTC预处理+高渗透压海水刺激组
图2 SPAK特异性siRNA可以抑制蛋白激酶SPAK在NR8383细胞中的转录和翻译。注:A:转染SPAK特异性siRNA可抑制SPAK的转录;B:转染SPAK特异性siRNA可降低SPAK蛋白的表达。Con为对照组,Scram为非特异性干扰组,siSPAK为SPAK特异性干扰组
图3 抑制NR8383细胞SPAK的转录、翻译可以减少海水刺激所致炎症因子TNF-α及IL-1β释放。注:N为对照组,SW为高渗海水刺激组,SW+siSPAK为SPAK干扰+高渗海水刺激组;*P<0.05 vs. N,***P<0.001 vs. N,#P<0.05 vs. SW
图4 抑制NR8383细胞SPAK的转录、翻译可以减少海水刺激所致MPO活性增加以及H2O2浓度升高。注:N为正常对照组,SW为高渗海水刺激组,SW+siSPAK为SPAK干扰+高渗海水刺激组;*P<0.05 vs. N, ***P<0.001 vs. N,#P<0.05 vs. SW
1
Ponce-Coria J, Markadieu N, Austin TM, et al. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters[J]. J Biol Chem, 2014, 289(25): 17680-17688.
2
Zhang J, Bhuiyan M, Zhang T, et al. Modulation of brain cation-Cl(-) cotransport via the SPAK kinase inhibitor ZT-1a[J]. Nat Commun, 2020, 11(1): 78.
3
Cheng CJ, Yoon J, Baum M, et al. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb[J]. Am J Physiol Renal Physiol, 2015, 308(5): F437-F443.
4
Hung CM, Peng CK, Yang SS, et al. WNK4-SPAK modulates lipopolysaccharide-induced macrophage activation[J]. Biochem Pharmacol, 2020, 171: 113738.
5
Johnston AM, Naselli G, Gonez LJ, et al. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway[J]. Oncogene, 2000, 19(37): 4290-4297.
6
Shen CH, Lin JY, Lu CY, et al. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure[J]. BMC Pulm Med, 2021, 21(1): 58.
7
薄丽艳,李聪聪,金发光. 抗氧化治疗在急性肺损伤和急性呼吸窘迫综合征中的应用进展[J/CD]. 中华肺部疾病杂志(电子版), 2016, 9(1): 80-81.
8
李聪聪,薄丽艳,刘庆晴,等. 蛋白激酶SPAK在海水淹溺性肺损伤中的表达和作用[J/CD]. 中华肺部疾病杂志(电子版), 2014, 7(1): 16-18.
9
李聪聪,薄丽艳,李艳燕,等. 海水吸入型肺损伤中蛋白激酶SPAK的表达改变[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(2): 152-157.
10
Thomson MN, Cuevas CA, Bewarder TM, et al. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia[J]. Am J Physiol Renal Physiol, 2020, 318(1): F216-F228.
11
Li C, Liu M, Bo L, et al. NFAT5 participates in seawater inhalation induced acute lung injury via modulation of NF-κB activity[J]. Mol Med Rep, 2016, 14(6): 5033-5040.
12
Wang W, Xin J, Chen W, et al. Icariin alleviates hypoxia-induced damage in MC3T3-E1 cells by downregulating TALNEC2[J]. Biotechnol Appl Biochem, 2020, 67(6): 1000-1010.
13
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium[J]. Am J Physiol Renal Physiol, 2018, 315(4): F903-F907.
14
Yuan P, Zheng X, Li M, et al. Two sulfur glycoside compounds isolated from lepidium apetalum willd protect NRK52e cells against hypertonic-induced adhesion and inflammation by suppressing the MAPK signaling pathway and RAAS[J]. Molecules, 2017, 22(11): 1956.
15
Shih CC, Hsu LP, Liao MH, et al. Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice[J]. Eur J Pharmacol, 2017, 814: 248-254.
16
Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus[J]. Nat Med, 2017, 23(8): 997-1003.
17
Yan Y, Dalmasso G, Nguyen HT, et al. Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function[J]. PLoS One, 2009, 4(4): e5049.
18
Yan Y, Dalmasso G, Nguyen HT, et al. Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation[J]. Am J Pathol, 2008, 173(4): 1013-1028.
19
Wu D, Lai N, Deng R, et al. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway[J]. Exp Neurol, 2020: 113386.
20
Zhang Y, Viennois E, Xiao B, et al. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice[J]. Am J Pathol, 2013, 182(5): 1617-1628.
[1] 鲁梦远, 赵学刚, 郝嘉文, 盖晨阳, 李聪颖, 张晶, 张庆富. 高压电烧伤大鼠肝脏氧化应激损伤及灯盏花素的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 113-118.
[2] 杨文飞, 郝嘉文, 鲁梦远, 赵学刚, 李聪颖, 盖晨阳, 张晶, 张庆富. 高压电烧伤对大鼠心肌氧化应激的影响及N-乙酰半胱氨酸的干预作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 106-112.
[3] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[4] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[5] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[6] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[7] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[8] 余玲玲, 彭倪, 刘小虎, 刘聪慧. 蟛蜞菊内酯上调miR-190表达抑制高糖诱导的人视网膜血管内皮细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 339-345.
[9] 裴捷, 毛本亮, 郝定盈, 苑伟, 颜勇, 吴帆, 王鹏珍, 王百林. 槲皮素调控肝缺血-再灌注损伤的研究进展及应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 244-249.
[10] 王子琪, 李萍, 蔡标, 杨秀敏. 雌激素在糖尿病性视网膜病变中作用机制的研究进展[J]. 中华眼科医学杂志(电子版), 2024, 14(03): 187-192.
[11] 张晟豪, 周杰, 姚鹏飞, 李长栋, 屈晓东, 南亚强, 曹丽. 雷公藤红素在创伤性脑损伤后继发性损伤中的作用及机制研究[J]. 中华神经创伤外科电子杂志, 2024, 10(03): 132-140.
[12] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[13] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[14] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要