1 |
Ponce-Coria J, Markadieu N, Austin TM, et al. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters[J]. J Biol Chem, 2014, 289(25): 17680-17688.
|
2 |
Zhang J, Bhuiyan M, Zhang T, et al. Modulation of brain cation-Cl(-) cotransport via the SPAK kinase inhibitor ZT-1a[J]. Nat Commun, 2020, 11(1): 78.
|
3 |
Cheng CJ, Yoon J, Baum M, et al. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is critical for sodium reabsorption in isolated, perfused thick ascending limb[J]. Am J Physiol Renal Physiol, 2015, 308(5): F437-F443.
|
4 |
Hung CM, Peng CK, Yang SS, et al. WNK4-SPAK modulates lipopolysaccharide-induced macrophage activation[J]. Biochem Pharmacol, 2020, 171: 113738.
|
5 |
Johnston AM, Naselli G, Gonez LJ, et al. SPAK, a STE20/SPS1-related kinase that activates the p38 pathway[J]. Oncogene, 2000, 19(37): 4290-4297.
|
6 |
Shen CH, Lin JY, Lu CY, et al. SPAK-p38 MAPK signal pathway modulates claudin-18 and barrier function of alveolar epithelium after hyperoxic exposure[J]. BMC Pulm Med, 2021, 21(1): 58.
|
7 |
薄丽艳,李聪聪,金发光. 抗氧化治疗在急性肺损伤和急性呼吸窘迫综合征中的应用进展[J/CD]. 中华肺部疾病杂志(电子版), 2016, 9(1): 80-81.
|
8 |
李聪聪,薄丽艳,刘庆晴,等. 蛋白激酶SPAK在海水淹溺性肺损伤中的表达和作用[J/CD]. 中华肺部疾病杂志(电子版), 2014, 7(1): 16-18.
|
9 |
李聪聪,薄丽艳,李艳燕,等. 海水吸入型肺损伤中蛋白激酶SPAK的表达改变[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(2): 152-157.
|
10 |
Thomson MN, Cuevas CA, Bewarder TM, et al. WNK bodies cluster WNK4 and SPAK/OSR1 to promote NCC activation in hypokalemia[J]. Am J Physiol Renal Physiol, 2020, 318(1): F216-F228.
|
11 |
Li C, Liu M, Bo L, et al. NFAT5 participates in seawater inhalation induced acute lung injury via modulation of NF-κB activity[J]. Mol Med Rep, 2016, 14(6): 5033-5040.
|
12 |
Wang W, Xin J, Chen W, et al. Icariin alleviates hypoxia-induced damage in MC3T3-E1 cells by downregulating TALNEC2[J]. Biotechnol Appl Biochem, 2020, 67(6): 1000-1010.
|
13 |
Rodan AR. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium[J]. Am J Physiol Renal Physiol, 2018, 315(4): F903-F907.
|
14 |
Yuan P, Zheng X, Li M, et al. Two sulfur glycoside compounds isolated from lepidium apetalum willd protect NRK52e cells against hypertonic-induced adhesion and inflammation by suppressing the MAPK signaling pathway and RAAS[J]. Molecules, 2017, 22(11): 1956.
|
15 |
Shih CC, Hsu LP, Liao MH, et al. Effects of SPAK on vascular reactivity and nitric oxide production in endotoxemic mice[J]. Eur J Pharmacol, 2017, 814: 248-254.
|
16 |
Karimy JK, Zhang J, Kurland DB, et al. Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus[J]. Nat Med, 2017, 23(8): 997-1003.
|
17 |
Yan Y, Dalmasso G, Nguyen HT, et al. Ste20-related proline/alanine-rich kinase (SPAK) regulated transcriptionally by hyperosmolarity is involved in intestinal barrier function[J]. PLoS One, 2009, 4(4): e5049.
|
18 |
Yan Y, Dalmasso G, Nguyen HT, et al. Nuclear factor-kappaB is a critical mediator of Ste20-like proline-/alanine-rich kinase regulation in intestinal inflammation[J]. Am J Pathol, 2008, 173(4): 1013-1028.
|
19 |
Wu D, Lai N, Deng R, et al. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway[J]. Exp Neurol, 2020: 113386.
|
20 |
Zhang Y, Viennois E, Xiao B, et al. Knockout of Ste20-like proline/alanine-rich kinase (SPAK) attenuates intestinal inflammation in mice[J]. Am J Pathol, 2013, 182(5): 1617-1628.
|