切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 176 -182. doi: 10.3877/cma.j.issn.1674-6902.2022.02.008

论著

不同频率神经肌肉电刺激对ARDS相关性ICU-AW小鼠肌肉萎缩防治及临床意义
赵磊1, 徐朝霞2, 胡健3, 刘畅3, 潘晓佳3, 林正霄3, 冯健3,(), 李福祥4,()   
  1. 1. 646000 泸州,西南医科大学临床医学院
    2. 610083 成都,西部战区总医院急诊医学科
    3. 610083 成都,西部战区总医院重症医学科
    4. 646000 泸州,西南医科大学临床医学院;610083 成都,西部战区总医院重症医学科
  • 收稿日期:2022-02-15 出版日期:2022-04-25
  • 通信作者: 冯健, 李福祥
  • 基金资助:
    四川省干部保健科研课题(川干研2022-1303); 西部战区总医院军事医学科研项目(2019LH05)

Effect and mechanism of different frequency neuromuscular electrical stimulation on ICU-acquired weakness muscular atrophy in mice

Lei Zhao1, Zhaoxia Xu2, Jian Hu3, Chang Liu3, Xiaojia Pan3, Zhengxiao Lin3, Jian Feng3,(), Fuxiang Li4,()   

  1. 1. Clinical College of Southwest Medical University, Luzhou 646000, China
    2. Emergency Department, General Hospital of Western Theater Command, Chengdu 610083, China
    3. Department of Critical Care Medicine, General Hospital of Western Theater Command, Chengdu 610083, China
    4. Clinical College of Southwest Medical University, Luzhou 646000, China; Department of Critical Care Medicine, General Hospital of Western Theater Command, Chengdu 610083, China
  • Received:2022-02-15 Published:2022-04-25
  • Corresponding author: Jian Feng, Fuxiang Li
引用本文:

赵磊, 徐朝霞, 胡健, 刘畅, 潘晓佳, 林正霄, 冯健, 李福祥. 不同频率神经肌肉电刺激对ARDS相关性ICU-AW小鼠肌肉萎缩防治及临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 176-182.

Lei Zhao, Zhaoxia Xu, Jian Hu, Chang Liu, Xiaojia Pan, Zhengxiao Lin, Jian Feng, Fuxiang Li. Effect and mechanism of different frequency neuromuscular electrical stimulation on ICU-acquired weakness muscular atrophy in mice[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 176-182.

目的

不同频率下神经肌肉电刺激(neuromuscular electrical stimulation, NMES)在ARDS相关性ICU获得性衰弱(ICU-acquired weakness, ICU-AW)中的作用及机制。

方法

健康雄性C57BL/6小鼠88只随机分为11组,每组8只。分为:空白对照组(C1)、气管内注入无菌水组(C2)、ICU-AW模型组(ICU-AW)、ICU-AW+AMPK激动剂A-769662组(ICU-AW-A)、ICU-AW+A-769662溶剂对照组(ICU-AW-V)、NMES 20 Hz组(ICU-AW-20)、NMES 40 Hz组(ICU-AW-40)、NMES 60 Hz组(ICU-AW-60)、NMES 80 Hz组(ICU-AW-80)、ICU-AW-40+AMPK抑制剂Compound C组(ICU-AW-40-C)、ICU-AW-40+Compound C溶剂对照组(ICU-AW-40-V)。检测小鼠四肢抓力和存活状态,7 d后收集小鼠肺组织和腓肠肌标本,采用HE染色观察肺和肌肉病理学变化,采用western blot以及qRT-PCR的方法检测小鼠腓肠肌中Atrogin-1、MuRF-1 mRNA和蛋白表达。

结果

与C1、C2组相比,ICU-AW小鼠出现肺损伤及腓肠肌萎缩,四肢抓力及存活率显著降低(P<0.05),腓肠肌组织中MuRF-1、Atrogin-1基因及蛋白表达显著降低(P值分别为<0.001和<0.05);和C2组相比,ICU-AW组p-AMPK蛋白水平显著降低(P<0.01);与ICU-AW-V组相比,ICU-AW-A组小鼠腓肠肌肌肉萎缩改善,四肢抓力显著提高,Atrogin-1和MuRF-1蛋白及基因表达量显著降低(P<0.01);相比于ICU-AW组,ICU-AW-20组、ICU-AW-60组、ICU-AW-40组四肢抓力均显著提升(P<0.05),其中,ICU-AW-40提升最为显著(P<0.05);ICU-AW-40组Atrogin-1和MuRF-1蛋白及基因表达量也较其它四组显著降低(P<0.01);而AMPK抑制剂Compound C干预后能够显著逆转NMES 40 Hz方案的ICU-AW肌无力的保护作用(P<0.05,ICU-AW-40-V vs. ICU-AW-40-C)。

结论

早期应用40 Hz NMES能够显著改善ARDS相关性ICU-AW小鼠肌肉萎缩无力,其保护机制可能是通过激活AMPK发挥作用。

Objective

To investigate the effect and mechanism of neuromuscular electrical stimulation (NMES) at different frequencies in the prevention and treatment of ICU-acquired weakness (ICU-AW).

Methods

Eighty-eight healthy male C57BL/6 mice were randomly divided into 11 groups with 8 mice in each group. The specific groups were as follows: blank control group (C1) , tracheotomy + aseptic water infusion control group (C2), ICU-AW model group (ICU-AW), NMES 20 Hz group (ICU-AW-20), NMES 40Hz group (ICU-AW-40) , NMES 60 Hz group (ICU-AW-60), NMES 80 Hz group (ICU-AW-80), ICU model group + AMPK agonist group (ICU-AW-A), ICU model group + AMPK agonist control group (ICU-AW-V), ICU model group + AMPK inhibitor group (ICU-AW-40-C), and ICU model group+ AMPK inhibitor control group (ICU-AW-40-C). The limbs holding power and survival status of the mice were detected after operation. After 7 days, mice lung tissue and gastrocnemius specimens were collected, and pathological changes were observed by HE staining, and Western blot and qRT-PCR were applied to detect Atrogin-1 MuRF-1 expression in mice gastrocnemius.

Results

When compared with C1 and C2, lung injury and gastrocnemius muscle atrophy were apparently noted, and the limbs holding power significantly reduced in ICU-AW (P<0.05). The mRNA and protein expressions of Atrogin-1 and MuRF-1 were significantly decreased in ICU-AW when compared to C1 and C2 (P<0.01 and P<0.05, respectively). There was a significant reduction of p-AMPK level in ICU-AW when compared with that in C2 (P<0.01). The mice in ICU-AW-A treated with A-769662, an agonist of AMPK, the gastrocnemius muscle atrophy improved, and the grasping power was significantly elevated and the level of mRNA and protein expressions of Atrogin-1 and MuRF-1 were significantly reduced (P<0.01, vs. ICU-AW-C). After NMSE treatment, the grasping power in ICU-AW-20, ICU-AW-40, and ICU-AW-60 was improved when compared with that in ICU-AW (P<0.05), the gastrocnemius muscle atrophy was improved, and Atrogin-1 and MuRF-1 protein and gene expression were significantly decreased(P<0.05). The muscle weakness in ICU-AW-40 alleviated most dramatically than any other groups (P<0.05, vs. ICU-AW-20 or ICU-AW-60 ). The mice was treated compound C or Compared with the control group, the grasping ability and gastrocnemius muscle atrophy were improved in ICU-AW-A group, and the protein and gene expression levels of Atrogin-1 and MuRF-1 were significantly decreased in ICU-AW-A group (P<0.01). Compound C, an AMPK inhibitor, significantly reversed the protective effect of NMES 40 Hz on ICU-AW (P<0.05, ICU-AW-40-C vs. ICU-AW-40-V).

Conclusion

Early intervention with 40 Hz NMES can significantly improve ARDS related ICU-AW skeletal muscle atrophy in mice, and the protective mechanism may be through the regulation of AMPK.

表1 实时荧光定量RT-PCR引物系列
图1 气管内滴注LPS构建ARDS相关性ICU-AW小鼠模型;注:A:小鼠腓肠肌组织病理(HE染色 SP×100);B:小鼠四肢抓力-时间变化;C:小鼠生存曲线图;D:qRT-PCR检测各组小鼠腓肠肌中Atrogin-1和MuRF-1 mRNA相对表达量;E:Western blot检测各组小鼠腓肠肌组织Atrogin-1和MuRF-1蛋白的表达;F:各组小鼠腓肠肌中Atrogin-1和MuRF-1蛋白相对表达量。注:与C1、2两组比较,*表示P<0.05,#表示P<0.001
图2 AMPK蛋白在LPS诱导的ARDS相关性ICU-AW中的作用;注:A:Western blot检测小鼠腓肠肌p-AMPK和AMPK表达;B:小鼠腓肠肌中Atrogin-1和MuRF-1蛋白相对表达量比较;C:小鼠腓肠肌组织病理(HE染色 SP×100);D:小鼠四肢抓力-时间变化;E:小鼠腓肠肌中Atrogin-1 、MuRF-1 mRNA相对表达量;F:Western blot检测小鼠腓肠肌Atrogin-1和MuRF-1蛋白表达;G:小鼠腓肠肌Atrogin-1和MuRF-1蛋白相对表达量比较。注:图2B,#表示P<0.01,与C2组比较;图2D、2E和2G,*表示P<0.05,#表示P<0.01,与ICU-AW-V组比较
图3 不同频率NMES刺激对ICU-AW小鼠腓肠肌的影响;注:A:各组小鼠腓肠肌组织病理(HE染色 SP×100);B:各组小鼠四肢抓力-时间变化;C:各组小鼠腓肠肌中Atrogin-1和MuRF-1 mRNA相对表达量;D:Western blot检测各组小鼠腓肠肌Atrogin-1和MuRF-1蛋白表达情况;E:各组小鼠腓肠肌中Atrogin-1和MuRF-1蛋白相对表达量。注:图3B:a表示P<0.05,ICU-AW-40与ICU-AW组比较;b表示P<0.05,ICU-AW-40与ICU-AW-60组比较;c表示P<0.05,ICU-AW-40与ICU-AW-80组比较;d表示P<0.05,ICU-AW-20与ICU-AW组比较;e表示P<0.05,ICU-AW-60与ICU-AW组比较;图3C和3E:#表示P<0.01和ICU-AW比较,^表示P<0.01和ICU-AW-40比较
图4 AMPK抑制剂对NMES预防小鼠ICU-AW的影响;注:A:两组小鼠腓肠肌组织病理(HE染色 SP×100);B:两组小鼠四肢抓力-时间曲线变化;C:两组小鼠腓肠肌Atrogin-1和MuRF-1 mRNA相对表达量;D:Western blot检测两组小鼠腓肠肌Atrogin-1和MuRF-1蛋白表达情况;E:两组小鼠腓肠肌中Atrogin-1和MuRF-1蛋白相对表达量。注:*表示P<0.05,#表示P<0.01,与ICU-AW-C组比较
1
Vanhorebeek I, Latronico N, Van den BG. ICU-acquired weakness [J]. Intensive Care Med, 2020, 46(4): 637-653.
2
Tipping CJ, Harrold M, Holland A, et al. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review [J]. Intensive Care Med, 2017, 43(2): 171-183.
3
Parry SM, Berney S, Granger C L, et al. Electrical muscle stimulation in the intensive care setting: a systematic review [J]. Crit Care Med, 2013, 41(10): 2406-2418.
4
Tanaka M, Tanaka K, Tategaki J, et al. Preventive effects of kilohertz frequency electrical stimulation on sepsis-induced muscle atrophy [J]. J Musculoskelet Neuronal Interact, 2016, 16(2): 152-160.
5
Dupont Salter AC, RichmondI F J, Loeb GE. Prevention of muscle disuse atrophy by low-frequency electrical stimulation in rats [J]. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(3): 218-226.
6
Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern [J]. Chem Biol, 2012, 19(10): 1222-1236.
7
Cai W, Cheng J, Zong S, et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner [J]. Mol Immunol, 2021, 140: 186-195.
8
Price NL, Gomes AP, Ling A J, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function [J]. Cell Metab, 2012, 15(5): 675-690.
9
Weber-Carstens S, Schneider J, Wollersheim T, et al. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction[J]. Am J Respir Crit Care Med, 2013, 187(4): 387-396.
10
Files D C, D'Alessio FR, Johnston LF, et al. A critical role for muscle ring finger-1 in acute lung injury-associated skeletal muscle wasting[J]. Am J Respir Crit Care Med, 2012, 185(8): 825-834.
11
Friedrich O, Reid MB, Van den Berghe G, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ⅲ[J]. Physiol Rev, 2015, 95(3): 1025-1109.
12
Sidiras G, Patsaki I, Karatzanos E, et al. Long term follow-up of quality of life and functional ability in patients with ICU acquired Weakness - A post hoc analysis [J]. J Crit Care, 2019, 53: 223-230.
13
Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation[J]. Eur J Appl Physiol, 2010, 110(2): 223-234.
14
唐 章,徐朝霞,李 亚,等. 构建脓毒症大鼠ICU获得性衰弱模型的研究[J]. 西南国防医药2019, 29(6): 633-636.
15
Tang H, Shrager JB. The signaling network resulting in ventilator-induced diaphragm dysfunction[J]. Am J Respir Cell Mol Biol, 2018, 59(4): 417-427.
16
Klaude M, Fredriksson K, Tjader I, et al. Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis[J]. Clin Sci (Lond), 2007, 112(9): 499-506.
17
Wollersheim T, Woehlecke J, Krebs M, et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness[J]. Intensive Care Med, 2014, 40(4): 528-538.
18
姚 烽,汲广岩,张 力. 腺苷酸活化蛋白激酶:炎症调控新靶点[J]. 生理学报2012, 64(3): 341-345.
19
曾正中. 细胞自噬在运动干预延缓衰老性肌萎缩中的作用及机制研究[D]. 汉体育学院,2021.
20
Routsi C, Gerovasili V, Vasileiadis I, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial[J]. Crit Care, 2010, 14(2): R74.
21
Dirks ML, Hansen D, Van Assche A, et al. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients[J]. Clin Sci (Lond), 2015, 128(6): 357-365.
22
Fan E, Dowdy DW, Colantuoni E, et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study[J]. Crit Care Med, 2014, 424: 849-859.
23
Hodgson CL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU[J]. Crit Care Med, 2016, 446: 1145-1152.
24
Anekwe DE, Biswas S, Bussieres A, et al. Early rehabilitation reduces the likelihood of developing intensive care unit-acquired weakness: a systematic review and meta-analysis[J]. Physiotherapy, 2020, 107: 1-10.
25
Cullen ML, Casazza GA, Davis BA. Passive recovery strategies after exercise: a narrative literature review of the current evidence[J]. Curr Sports Med Rep, 2021, 207: 351-358.
26
Oh S, Yang J, Park C, et al. Dieckol attenuated glucocorticoid-induced muscle atrophy by decreasing NLRP3 inflammasome and pyroptosis[J]. Int J Mol Sci, 2021, 22(15): 8057.
27
Bullon P, Marin-Aguilar F, Roman-Malo L. AMPK/Mitochondria in metabolic diseases[J]. Exp Suppl, 2016, 107: 129-152.
28
Zhou J, Yu Y, Yang X, et al. Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-small ka, CyrillicB pathway[J]. Eur J Pharmacol, 2019, 852: 179-188.
29
Enoka RM, Amiridis IG, Duchateau J. Electrical stimulation of muscle: Electrophysiology and rehabilitation [J]. Physiology (Bethesda), 2020, 351: 40-56.
30
Shen J, Nie X, Huang SY, et al. Neuromuscular electrical stimulation improves muscle atrophy induced by chronic hypoxia-hypercapnia through the MicroRNA-486/PTEN/FoxO1 pathway[J]. Biochem Biophys Res Commun, 2019, 5094: 1021-1027.
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[3] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[4] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[5] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[6] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[7] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[8] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[9] 孙藏岚, 黄丽丽, 李小雨, 邱海波. 脂质组学在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 127-135.
[10] 史楠, 袁雪燕, 邱海波. 肺复张在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(02): 118-126.
[11] 王永广, 朱鹏, 许千金, 甘桂芬, 石钟山, 潘纯. 急性呼吸窘迫综合征诊断标准亟需更新[J]. 中华重症医学电子杂志, 2024, 10(02): 113-117.
[12] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
[13] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[14] 卢梦诗, 刘威, 马加威, 嵇丹丹, 贾璇, 詹心萍, 罗亮. 人工智能在急性呼吸窘迫综合征领域的应用进展[J]. 中华重症医学电子杂志, 2024, 10(01): 66-71.
[15] 计超, 向群. 乙酰胆碱受体对急性呼吸窘迫综合征小鼠T细胞亚群和炎症因子的影响[J]. 中华诊断学电子杂志, 2024, 12(01): 50-56.
阅读次数
全文


摘要