切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 441 -444. doi: 10.3877/cma.j.issn.1674-6902.2022.03.045

综述

溶酶体与肿瘤的研究进展
宋丽媛1, 陈琰2, 戢福云1, 钱频2,()   
  1. 1. 442000 十堰,湖北医药学院,基础医学院
    2. 400037 重庆,陆军(第三)军医大学第二附属医院野战内科
  • 收稿日期:2021-12-21 出版日期:2022-06-25
  • 通信作者: 钱频
  • 基金资助:
    国家自然科学基金资助项目(81372499); 湖北医药学院人才启动金(2018QDJZR01和2018QDJZR11)

Advances in studying lysosomes and tumors

Liyuan Song1, Yan Chen2, Fuyun Ji1   

  • Received:2021-12-21 Published:2022-06-25
引用本文:

宋丽媛, 陈琰, 戢福云, 钱频. 溶酶体与肿瘤的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 441-444.

Liyuan Song, Yan Chen, Fuyun Ji. Advances in studying lysosomes and tumors[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(03): 441-444.

肿瘤是指机体在各种因素刺激下,人体组织器官发生细胞异常生长。根据肿瘤细胞特性及其对机体危害程度,肿瘤分为良性肿瘤和恶性肿瘤两大类。其中恶性肿瘤中,以肺癌最为常见,2020年全球癌症死亡病例996例,其中肺癌死亡180例。2020年,我国癌症新发病例457例,肺癌82例。一般良性肿瘤恶性程度较低,少有转移和复发发生;而恶性肿瘤恶性程度极高,常发生转移且易复发,对机体危害大。恶性肿瘤是世界各国人口病死的主要原因,国内外科研工作者、正致力于攻克的恶性肿瘤[1]

图1 溶酶体通过滞留质子化疏水弱碱化疗药物参与肿瘤耐药模式图
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Zhu S, Yao R, Li Y, et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases[J]. Cell death & disease, 2020, 11(9): 817.
3
Oot RA, Couoh-Cardel S, Sharma S, et al. Breaking up and making up: The secret life of the vacuolar H(+)-ATPase[J]. Protein Sci, 2017, 26(5): 896-909.
4
Pu J, Guardia CM, Keren-Kaplan T, et al. Mechanisms and functions of lysosome positioning[J]. J Cell Sci, 2016, 129(23): 4329-4339.
5
Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome:a control centre for cellular clearance and energy metabolism[J]. Nat Rev Mol Cell Biol, 2013, 14(5): 283-296.
6
Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223-253.
7
Carroll B, Dunlop E. The lysosome: a crucial hub for AMPK and mTORC1 signalling[J]. Biochemical J, 2017, 474(9): 1453-1466.
8
Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer[J]. Annu Rev Cancer Biol, 2019, 3: 203-222.
9
Napolitano G, Ballabio A. TFEB at a glance[J]. J Cell Sci, 2016, 129(13): 2475-2481.
10
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease[J]. Ann N Y Acad Sci, 2016, 1371(1): 30-44.
11
Li L, Tan J, Miao Y, et al. ROS and Autophagy: Interactions and molecular regulatory mechanisms[J]. Cell Mol Neurobiol, 2015, 35(5): 615-621.
12
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
13
Fennelly C, Amaravadi RK. Lysosomal Biology in Cancer[J]. Methods Mol Biol, 2017, 1594: 293-308.
14
Armstrong J. Yeast vacuoles: more than a model lysosome[J]. Trends Cell Biol, 2010, 20(10): 580-585.
15
Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis[J]. Biomed Res Int, 2014, 2014: 869390.
16
Gong JS, Kim GJ. The role of autophagy in the placenta as a regulator of cell death[J]. Clin Exp Reprod Med, 2014, 41(3): 97-107.
17
Yan X, Zhou R, Ma Z. Autophagy-cell survival and death[J]. Adv Exp Med Biol, 2019, 1206: 667-696.
18
Galluzzi L, Pietrocola F, Bravo-san Pedro JM, et al. Autophagy in malignant transformation and cancer progression[J]. Embo J, 2015, 34(7): 856-880.
19
Chaabane W, User SD, El-Gazzah M, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer[J]. Arch Immunol Ther Exp (Warsz), 2013, 61(1): 43-58.
20
Kos J, Mitrovic AMirkovic B. The current stage of cathepsin B inhibitors as potential anticancer agents[J]. Future Med Chem, 2014, 6(11): 1355-1371.
21
Xu M, Yang L, Rong JG, et al. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway[J]. Glia, 2014, 62(6): 855-880.
22
Murphy M, Carlson JA, Keough MP, et al. Hypoxia regulation of the cell cycle in malignant melanoma: putative role for the cyclin-dependent kinase inhibitor p27[J]. J Cutan Pathol, 2004, 31(7): 477-482.
23
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1): 107-120.
24
Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1): 100.
25
Liu S, Li Y, Choi HMC, et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis[J]. Cell Death Dis, 2018, 9(5): 476.
26
Tonnessen-Murray CA, Frey WD, Rao SG, et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival[J]. J Cell Biol, 2019, 218(11): 3827-3844.
27
Sikora E, Bielak-Zmijewska A, Mosieniak G. Targeting normal and cancer senescent cells as a strategy of senotherapy[J]. Ageing Res Rev, 2019, 55: 100941.
28
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
29
He Y, Hara H, Núñ EZG. Mechanism and Regulation of NLRP3 Inflammasome Activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021.
30
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
31
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
32
Gao H, Bai Y, Jia Y, et al. Ferroptosis is a lysosomal cell death process[J]. Biochem Biophys Res Commun, 2018, 503(3): 1550-1556.
33
Davidson SM, Vander Heiden MG. Critical functions of the lysosome in cancer biology[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 481-507.
34
Kazmi F, Hensley T, Pope C, et al. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells)[J]. Drug Metab Dispos, 2013, 41(4): 897-905.
35
Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance[J]. Clin Cancer Res, 2011, 17(23): 7337-7346.
36
Zhitomirsky B, Assaraf Y. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance[J]. Oncotarget, 2015, 6(2): 1143-1156.
37
Chen P, Guo H, Chen J, et al. The chemotherapeutic drug boanmycin induces cell senescence and senescence-associated secretory phenotype factors, thus acquiring the potential to remodel the tumor microenvironment[J]. Anticancer Drugs, 2016, 27(2): 84-88.
38
Sun L, Zhao Y, Li X, et al. A lysosomal-mitochondrial death pathway is induced by solamargine in human K562 leukemia cells[J]. Toxicol In Vitro, 2010, 24(6): 1504-1511.
39
Yamagishi T, Sahni S, Sharp DM, et al. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration[J]. J Biol Chem, 2013, 288(44): 31761-31771.
40
Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration[J]. Leukemia, 2008, 22(8): 1576-1586.
41
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances[J]. Med Res Rev, 2019, 39(1): 176-264.
42
Behrmann H, Lurick A, Kuhlee A, et al. Structural identification of the Vps18 β-propeller reveals a critical role in the HOPS complex stability and function[J]. J Biol Chem, 2014, 289(48): 33503-33512.
43
Krämer L, Ungermann C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites[J]. Mol Biol Cell, 2011, 22(14): 2601-2611.
44
Lürick A, Kuhlee A, Bröcker C, et al.The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion[J]. J Biol Chem, 2015, 290(9): 5405-5413.
45
Takemoto K, Ebine K, Askani JC, et al. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2018, 115(10): E2457-E2466.
[1] 韩丹, 王婷, 肖欢, 朱丽容, 陈镜宇, 唐毅. 超声造影与增强CT对儿童肝脏良恶性病变诊断价值的对比分析[J]. 中华医学超声杂志(电子版), 2023, 20(09): 939-944.
[2] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[3] 姚宏伟, 魏鹏宇, 高加勒, 张忠涛. 不断提高腹腔镜右半结肠癌D3根治术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 1-4.
[4] 杜晓辉, 崔建新. 腹腔镜右半结肠癌D3根治术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 5-8.
[5] 周岩冰, 刘晓东. 腹腔镜右半结肠癌D3根治术消化道吻合重建方式的选择[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 9-13.
[6] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[7] 张生军, 赵阿静, 李守博, 郝祥宏, 刘敏丽. 高糖通过HGF/c-met通路促进结直肠癌侵袭和迁移的实验研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 21-24.
[8] 张焱辉, 张蛟, 朱志贤. 留置肛管在中低位直肠癌新辅助放化疗后腹腔镜TME术中的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 25-28.
[9] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[10] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[11] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[12] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[13] 燕速, 霍博文, 徐惠宁. 4K荧光腹腔镜扩大右半结肠CME+D3根治术及No.206、No.204组淋巴结清扫术[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 14-14.
[14] 徐军, 姬园园, 陈君平, 王健. 伴菊形团结构的脑膜瘤合并颅骨侵犯一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 916-919.
[15] 王军, 刘鲲鹏, 姚兰, 张华, 魏越, 索利斌, 陈骏, 苗成利, 罗成华. 腹膜后肿瘤切除术中大量输血患者的麻醉管理特点与分析[J]. 中华临床医师杂志(电子版), 2023, 17(08): 844-849.
阅读次数
全文


摘要