切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 441 -444. doi: 10.3877/cma.j.issn.1674-6902.2022.03.045

综述

溶酶体与肿瘤的研究进展
宋丽媛1, 陈琰2, 戢福云1, 钱频2,()   
  1. 1. 442000 十堰,湖北医药学院,基础医学院
    2. 400037 重庆,陆军(第三)军医大学第二附属医院野战内科
  • 收稿日期:2021-12-21 出版日期:2022-06-25
  • 通信作者: 钱频
  • 基金资助:
    国家自然科学基金资助项目(81372499); 湖北医药学院人才启动金(2018QDJZR01和2018QDJZR11)

Advances in studying lysosomes and tumors

Liyuan Song1, Yan Chen2, Fuyun Ji1   

  • Received:2021-12-21 Published:2022-06-25
引用本文:

宋丽媛, 陈琰, 戢福云, 钱频. 溶酶体与肿瘤的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(03): 441-444.

Liyuan Song, Yan Chen, Fuyun Ji. Advances in studying lysosomes and tumors[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(03): 441-444.

肿瘤是指机体在各种因素刺激下,人体组织器官发生细胞异常生长。根据肿瘤细胞特性及其对机体危害程度,肿瘤分为良性肿瘤和恶性肿瘤两大类。其中恶性肿瘤中,以肺癌最为常见,2020年全球癌症死亡病例996例,其中肺癌死亡180例。2020年,我国癌症新发病例457例,肺癌82例。一般良性肿瘤恶性程度较低,少有转移和复发发生;而恶性肿瘤恶性程度极高,常发生转移且易复发,对机体危害大。恶性肿瘤是世界各国人口病死的主要原因,国内外科研工作者、正致力于攻克的恶性肿瘤[1]

图1 溶酶体通过滞留质子化疏水弱碱化疗药物参与肿瘤耐药模式图
1
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
2
Zhu S, Yao R, Li Y, et al. Lysosomal quality control of cell fate: a novel therapeutic target for human diseases[J]. Cell death & disease, 2020, 11(9): 817.
3
Oot RA, Couoh-Cardel S, Sharma S, et al. Breaking up and making up: The secret life of the vacuolar H(+)-ATPase[J]. Protein Sci, 2017, 26(5): 896-909.
4
Pu J, Guardia CM, Keren-Kaplan T, et al. Mechanisms and functions of lysosome positioning[J]. J Cell Sci, 2016, 129(23): 4329-4339.
5
Settembre C, Fraldi A, Medina DL, et al. Signals from the lysosome:a control centre for cellular clearance and energy metabolism[J]. Nat Rev Mol Cell Biol, 2013, 14(5): 283-296.
6
Perera RM, Zoncu R. The lysosome as a regulatory hub[J]. Annu Rev Cell Dev Biol, 2016, 32: 223-253.
7
Carroll B, Dunlop E. The lysosome: a crucial hub for AMPK and mTORC1 signalling[J]. Biochemical J, 2017, 474(9): 1453-1466.
8
Perera RM, Di Malta C, Ballabio A. MiT/TFE family of transcription factors, lysosomes, and cancer[J]. Annu Rev Cancer Biol, 2019, 3: 203-222.
9
Napolitano G, Ballabio A. TFEB at a glance[J]. J Cell Sci, 2016, 129(13): 2475-2481.
10
Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization in cell death: new evidence and implications for health and disease[J]. Ann N Y Acad Sci, 2016, 1371(1): 30-44.
11
Li L, Tan J, Miao Y, et al. ROS and Autophagy: Interactions and molecular regulatory mechanisms[J]. Cell Mol Neurobiol, 2015, 35(5): 615-621.
12
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
13
Fennelly C, Amaravadi RK. Lysosomal Biology in Cancer[J]. Methods Mol Biol, 2017, 1594: 293-308.
14
Armstrong J. Yeast vacuoles: more than a model lysosome[J]. Trends Cell Biol, 2010, 20(10): 580-585.
15
Mallat A, Lodder J, Teixeira-Clerc F, et al. Autophagy: a multifaceted partner in liver fibrosis[J]. Biomed Res Int, 2014, 2014: 869390.
16
Gong JS, Kim GJ. The role of autophagy in the placenta as a regulator of cell death[J]. Clin Exp Reprod Med, 2014, 41(3): 97-107.
17
Yan X, Zhou R, Ma Z. Autophagy-cell survival and death[J]. Adv Exp Med Biol, 2019, 1206: 667-696.
18
Galluzzi L, Pietrocola F, Bravo-san Pedro JM, et al. Autophagy in malignant transformation and cancer progression[J]. Embo J, 2015, 34(7): 856-880.
19
Chaabane W, User SD, El-Gazzah M, et al. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer[J]. Arch Immunol Ther Exp (Warsz), 2013, 61(1): 43-58.
20
Kos J, Mitrovic AMirkovic B. The current stage of cathepsin B inhibitors as potential anticancer agents[J]. Future Med Chem, 2014, 6(11): 1355-1371.
21
Xu M, Yang L, Rong JG, et al. Inhibition of cysteine cathepsin B and L activation in astrocytes contributes to neuroprotection against cerebral ischemia via blocking the tBid-mitochondrial apoptotic signaling pathway[J]. Glia, 2014, 62(6): 855-880.
22
Murphy M, Carlson JA, Keough MP, et al. Hypoxia regulation of the cell cycle in malignant melanoma: putative role for the cyclin-dependent kinase inhibitor p27[J]. J Cutan Pathol, 2004, 31(7): 477-482.
23
Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012[J]. Cell Death Differ, 2012, 19(1): 107-120.
24
Gong Y, Fan Z, Luo G, et al. The role of necroptosis in cancer biology and therapy[J]. Mol Cancer, 2019, 18(1): 100.
25
Liu S, Li Y, Choi HMC, et al. Lysosomal damage after spinal cord injury causes accumulation of RIPK1 and RIPK3 proteins and potentiation of necroptosis[J]. Cell Death Dis, 2018, 9(5): 476.
26
Tonnessen-Murray CA, Frey WD, Rao SG, et al. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival[J]. J Cell Biol, 2019, 218(11): 3827-3844.
27
Sikora E, Bielak-Zmijewska A, Mosieniak G. Targeting normal and cancer senescent cells as a strategy of senotherapy[J]. Ageing Res Rev, 2019, 55: 100941.
28
Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4): 245-254.
29
He Y, Hara H, Núñ EZG. Mechanism and Regulation of NLRP3 Inflammasome Activation[J]. Trends Biochem Sci, 2016, 41(12): 1012-1021.
30
Xie Y, Hou W, Song X, et al. Ferroptosis: process and function[J]. Cell Death Differ, 2016, 23(3): 369-379.
31
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
32
Gao H, Bai Y, Jia Y, et al. Ferroptosis is a lysosomal cell death process[J]. Biochem Biophys Res Commun, 2018, 503(3): 1550-1556.
33
Davidson SM, Vander Heiden MG. Critical functions of the lysosome in cancer biology[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 481-507.
34
Kazmi F, Hensley T, Pope C, et al. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells)[J]. Drug Metab Dispos, 2013, 41(4): 897-905.
35
Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance[J]. Clin Cancer Res, 2011, 17(23): 7337-7346.
36
Zhitomirsky B, Assaraf Y. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance[J]. Oncotarget, 2015, 6(2): 1143-1156.
37
Chen P, Guo H, Chen J, et al. The chemotherapeutic drug boanmycin induces cell senescence and senescence-associated secretory phenotype factors, thus acquiring the potential to remodel the tumor microenvironment[J]. Anticancer Drugs, 2016, 27(2): 84-88.
38
Sun L, Zhao Y, Li X, et al. A lysosomal-mitochondrial death pathway is induced by solamargine in human K562 leukemia cells[J]. Toxicol In Vitro, 2010, 24(6): 1504-1511.
39
Yamagishi T, Sahni S, Sharp DM, et al. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration[J]. J Biol Chem, 2013, 288(44): 31761-31771.
40
Chapuy B, Koch R, Radunski U, et al. Intracellular ABC transporter A3 confers multidrug resistance in leukemia cells by lysosomal drug sequestration[J]. Leukemia, 2008, 22(8): 1576-1586.
41
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances[J]. Med Res Rev, 2019, 39(1): 176-264.
42
Behrmann H, Lurick A, Kuhlee A, et al. Structural identification of the Vps18 β-propeller reveals a critical role in the HOPS complex stability and function[J]. J Biol Chem, 2014, 289(48): 33503-33512.
43
Krämer L, Ungermann C. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites[J]. Mol Biol Cell, 2011, 22(14): 2601-2611.
44
Lürick A, Kuhlee A, Bröcker C, et al.The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion[J]. J Biol Chem, 2015, 290(9): 5405-5413.
45
Takemoto K, Ebine K, Askani JC, et al. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2018, 115(10): E2457-E2466.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?