切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 589 -592. doi: 10.3877/cma.j.issn.1674-6902.2022.04.040

综述

间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战
张梦薇1, 李玉英2,()   
  1. 1. 646099 泸州,西南医科大学附属医院呼吸与危重症医学科,炎症与变态反应实验室;646099 泸州,西南医科大学临床医学院
    2. 646099 泸州,西南医科大学附属医院呼吸与危重症医学科,炎症与变态反应实验室
  • 收稿日期:2022-04-05 出版日期:2022-08-25
  • 通信作者: 李玉英

MSCs for acute respiratory distress syndrome: Hope and challenge

Mengwei Zhang1, Yuying Li2()   

  • Received:2022-04-05 Published:2022-08-25
  • Corresponding author: Yuying Li
引用本文:

张梦薇, 李玉英. 间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 589-592.

Mengwei Zhang, Yuying Li. MSCs for acute respiratory distress syndrome: Hope and challenge[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 589-592.

急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)可由感染、创伤、脓毒症等多种肺内、肺外疾病和因素导致,是一种以渗透性肺水肿、低氧血症、肺顺应性下降为主要特征的临床综合征[1,2]。其主要病理变化为肺泡上皮屏障和毛细血管屏障的双重损害,炎症细胞聚集及多种炎性介质释放,大量含蛋白的液体填充肺泡及间质,形成非心源性水肿[3]。ARDS患者超过ICU住院人数的10%,其肺损伤难以逆转,因缺乏真正有效的治疗手段病死率较高[4]。近年来间充质干细胞(mesenchymal stem cells, MSCs)作为一种极具潜力的治疗手段在ARDS动物模型中表现出可靠的治疗效果,后续开展的1期及2a期等临床研究为MSCs治疗ARDS的安全性和有效性提供了依据[5,6]。但目前已完成的临床试验较少,且不同实验结果显示的疗效差异较大,而如何获取安全有效的MSCs并标准化生产以及优化给药方案等诸多问题尚需进一步研究和探讨。

1
顾晓凌,宋 勇. 线粒体DNA在急性肺损伤发生、发展中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(4): 348-350.
2
马李杰,李王平,金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
3
Sweeney RM, Mcauley DF. Acute respiratory distress syndrome[J]. The Lancet, 2016, 388(10058): 2416-2430.
4
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
5
Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial[J]. Lancet Respir Med, 2015, 3(1): 24-32.
6
Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2): 154-162.
7
Crop MJ, Baan CC, Korevaar SS, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells[J]. Clin Exp Immunol, 2010, 162(3): 474-486.
8
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297.
9
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3): 252-260.
10
Monsel A, Zhu YG, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice[J]. Am J Respir Crit Care Med, 2015, 192(3): 324-336.
11
Matthay MA, Pati S, Lee JW. Concise review: Mesenchymal stem (Stromal) cells: Biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis[J]. Stem Cells, 2017, 35(2): 316-324.
12
Li JW, Wu X. Mesenchymal stem cells ameliorate LPS-induced acute lung injury through KGF promoting alveolar fluid clearance of alveolar type Ⅱ cells [J]. Eur Rev Med Pharmacol Sci, 2015, 19(13): 2368-2378.
13
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8): 2210-2223.
14
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
15
Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
16
Bearden RN, Huggins SS, Cummings KJ, et al. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study[J]. Stem Cell Res Ther, 2017, 8(1): 218.
17
Cortés-araya Y, Amilon K, Rink BE, et al. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue[J]. Stem Cells Dev, 2018, 27(21): 1518-1525.
18
Chou HC, Chang CH, Chen CH, et al. Consecutive daily administration of intratracheal surfactant and human umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced lung injury in neonatal rats[J]. Stem Cell Res Ther, 2021, 12(1): 258.
19
Horie S, Masterson C, Brady J, et al. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy[J]. Stem Cell Res Ther, 2020, 11(1):116.
20
Jerkic M, Gagnon S, Rabani R, et al. Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis in part by enhancing peritoneal macrophage bacterial killing via heme oxygenase-1 induction in rats[J]. Anesthesiology, 2020, 132(1): 140-154.
21
Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial[J]. Stem Cells Transl Med, 2021, 10(5): 660-673.
22
Barcia RN, Santos JM, Filipe M, et al. What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells?[J]. Stem Cells Int, 2015, 2015: 583984.
23
Gorodetsky R, Aicher WK. Allogenic use of human placenta-derived stromal cells as a highly active subtype of mesenchymal stromal cells for cell-based therapies[J]. Int J Mol Sci, 2021, 22(10): 5302.
24
Lv X, Wang L, Zou X, et al. Umbilical cord mesenchymal stem cell therapy for regenerative treatment of rheumatoid arthritis: Opportunities and challenges[J]. Drug Des Devel Ther, 2021, 15: 3927-3936.
25
Jeske R, Yuan X, Fu Q, et al. In vitro culture expansion shifts the immune phenotype of human adipose-derived mesenchymal stem cells[J]. Front Immunol, 2021, 12: 621744.
26
Méndez-ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308): 829-834.
27
Li L, Dong L, Zhang J, et al. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide induced acute respiratory distress syndrome[J]. Int J Mol Med, 2019, 43(3): 1241-1252.
28
Liu AR, Liu L, Chen S, et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type Ⅱ alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro[J]. J Cell Physiol, 2013, 228(6): 1270-1283.
29
Meng SS, Xu XP, Chang W, et al. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning[J]. Stem Cell Res Ther, 2018, 9(1): 280.
30
Xu XP, Huang LL, Hu SL, et al. Genetic Modification of mesenchymal stem cells overexpressing angiotensin Ⅱ type 2 receptor increases cell migration to injured lung in LPS-induced acute lung injury mice[J]. Stem Cells Transl Med, 2018, 7(10): 721-730.
31
Chen J, Li C, Gao X, et al. Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice[J]. PLoS One, 2013, 8(12): e83303.
32
Yang JX, Zhang N, Wang HW, et al. CXCR4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats[J]. J Biol Chem, 2015, 290(4): 1994-2006.
33
Jerkic M, Masterson C, Ormesher L, et al. Overexpression of IL-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis[J]. J Clin Med, 2019, 8(6): 847.
34
Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury[J]. Am J Respir Crit Care Med, 2019, 199(10): 1214-1224.
35
Horie S, Gaynard S, Murphy M, et al. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism[J]. Intensive Care Med Exp, 2020, 8(1): 8.
36
BArtosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells[J]. Cells, 2019, 8(9): 1031.
37
Chen Y, Shu Z, Qian K, et al. Harnessing the properties of biomaterial to enhance the immunomodulation of mesenchymal stem cells[J]. Tissue Eng Part B Rev, 2019, 25(6): 492-499.
38
唐英俊,李华娟,王赛妮,等. 间充质干细胞移植治疗慢性阻塞性肺疾病研究现状[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(6): 836-839.
39
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? [J]. Stem Cell Res Ther, 2016, 7(1): 53.
40
Yamada M. Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases[J]. Respir Investig, 2021, 59(3): 302-311.
41
Dias VL, Braga KAO, Nepomuceno NA, et al. Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor′s lungs after hypovolemic shock [J]. J Bras Pneumol, 2021, 47(4): e20200452.
42
Brennan M, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration[J]. Adv Funct Mater, 2020, 30(37): 1909125.
43
Wysoczynki M, Khan A, Bolli R. New paradigms in cell therapy [J]. Circ Res, 2018, 123(2): 138-158.
44
Averyanov A, Koroleva I, Konoplyannikov M, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline[J]. Stem Cells Transl Med, 2020, 9(1): 6-16.
45
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia[J]. Thorax, 2014, 69(9): 819-825.
46
Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series[J]. Stem Cell Res Ther, 2021, 12(1): 91.
47
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(5): L395-406.
48
Chan MC, Kuok DI, Leung CY, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(13): 3621-3626.
49
Matthay MA, Zhuo H, Gotts JE, et al. Precision medicine for cell therapy in acute respiratory distress syndrome-Authors′reply[J]. Lancet Respir Med, 2019, 7(4): e14.
50
Lalu MM, Mcintyre L, Pugliese C, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials[J]. PLoS One, 2012, 7(10): e47559.
51
Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis[J]. Stem Cell Res Ther, 2021, 12(1): 545.
52
Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation [J]. Cancer Res, 2009, 69(13): 5331-5339.
[1] 李振翮, 魏长青, 甄国栋, 李振富. 脓毒症并发急性呼吸窘迫综合征患者血清S1P、Wnt5a变化及其临床意义[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 293-300.
[2] 杨茂宪, 沈鹏, 王倩倩, 吴旺, 沈永帅, 蒋禛, 徐龙生, 朱建刚, 刘倍倍. 吡啶甲酸镁联合地塞米松对急性呼吸窘迫综合征大鼠的治疗作用研究[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 196-203.
[3] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[4] 魏丁, 乔艳艳, 顾兴, 张燕, 李艳燕, 钱卫生, 潘蕾, 高永恒, 金发光. 体外膜肺氧合救治急性呼吸窘迫综合征不良预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 363-367.
[5] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[8] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[9] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[10] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[11] 倪韫晖, 杨毅, 袁雪燕, 邱海波. 胸壁加压在急性呼吸窘迫综合征中的应用和临床进展[J]. 中华重症医学电子杂志, 2024, 10(03): 243-247.
[12] 杨永红, 杨莹, 齐红蕾, 刘福瑞, 朱金源. 单细胞测序在急性呼吸窘迫综合征中的应用进展[J]. 中华重症医学电子杂志, 2024, 10(03): 248-252.
[13] 李松栗, 黄蔚, 巢杰, 杨毅, 邱海波. 单核/巨噬细胞来源的细胞外囊泡在急性呼吸窘迫综合征中的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 253-257.
[14] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[15] 刘悦, 潘纯. 急性呼吸窘迫综合征患者肌松剂滴定的必要性与可行性[J]. 中华重症医学电子杂志, 2024, 10(02): 108-112.
阅读次数
全文


摘要