切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 589 -592. doi: 10.3877/cma.j.issn.1674-6902.2022.04.040

综述

间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战
张梦薇1, 李玉英2,()   
  1. 1. 646099 泸州,西南医科大学附属医院呼吸与危重症医学科,炎症与变态反应实验室;646099 泸州,西南医科大学临床医学院
    2. 646099 泸州,西南医科大学附属医院呼吸与危重症医学科,炎症与变态反应实验室
  • 收稿日期:2022-04-05 出版日期:2022-08-25
  • 通信作者: 李玉英

MSCs for acute respiratory distress syndrome: Hope and challenge

Mengwei Zhang1, Yuying Li2()   

  • Received:2022-04-05 Published:2022-08-25
  • Corresponding author: Yuying Li
引用本文:

张梦薇, 李玉英. 间充质干细胞治疗急性呼吸窘迫综合征:希望和挑战[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 589-592.

Mengwei Zhang, Yuying Li. MSCs for acute respiratory distress syndrome: Hope and challenge[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 589-592.

急性呼吸窘迫综合征(acute respiratory distress syndrome, ARDS)可由感染、创伤、脓毒症等多种肺内、肺外疾病和因素导致,是一种以渗透性肺水肿、低氧血症、肺顺应性下降为主要特征的临床综合征[1,2]。其主要病理变化为肺泡上皮屏障和毛细血管屏障的双重损害,炎症细胞聚集及多种炎性介质释放,大量含蛋白的液体填充肺泡及间质,形成非心源性水肿[3]。ARDS患者超过ICU住院人数的10%,其肺损伤难以逆转,因缺乏真正有效的治疗手段病死率较高[4]。近年来间充质干细胞(mesenchymal stem cells, MSCs)作为一种极具潜力的治疗手段在ARDS动物模型中表现出可靠的治疗效果,后续开展的1期及2a期等临床研究为MSCs治疗ARDS的安全性和有效性提供了依据[5,6]。但目前已完成的临床试验较少,且不同实验结果显示的疗效差异较大,而如何获取安全有效的MSCs并标准化生产以及优化给药方案等诸多问题尚需进一步研究和探讨。

1
顾晓凌,宋 勇. 线粒体DNA在急性肺损伤发生、发展中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(4): 348-350.
2
马李杰,李王平,金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
3
Sweeney RM, Mcauley DF. Acute respiratory distress syndrome[J]. The Lancet, 2016, 388(10058): 2416-2430.
4
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
5
Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial[J]. Lancet Respir Med, 2015, 3(1): 24-32.
6
Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2): 154-162.
7
Crop MJ, Baan CC, Korevaar SS, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells[J]. Clin Exp Immunol, 2010, 162(3): 474-486.
8
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297.
9
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3): 252-260.
10
Monsel A, Zhu YG, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice[J]. Am J Respir Crit Care Med, 2015, 192(3): 324-336.
11
Matthay MA, Pati S, Lee JW. Concise review: Mesenchymal stem (Stromal) cells: Biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis[J]. Stem Cells, 2017, 35(2): 316-324.
12
Li JW, Wu X. Mesenchymal stem cells ameliorate LPS-induced acute lung injury through KGF promoting alveolar fluid clearance of alveolar type Ⅱ cells [J]. Eur Rev Med Pharmacol Sci, 2015, 19(13): 2368-2378.
13
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8): 2210-2223.
14
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
15
Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
16
Bearden RN, Huggins SS, Cummings KJ, et al. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study[J]. Stem Cell Res Ther, 2017, 8(1): 218.
17
Cortés-araya Y, Amilon K, Rink BE, et al. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue[J]. Stem Cells Dev, 2018, 27(21): 1518-1525.
18
Chou HC, Chang CH, Chen CH, et al. Consecutive daily administration of intratracheal surfactant and human umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced lung injury in neonatal rats[J]. Stem Cell Res Ther, 2021, 12(1): 258.
19
Horie S, Masterson C, Brady J, et al. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy[J]. Stem Cell Res Ther, 2020, 11(1):116.
20
Jerkic M, Gagnon S, Rabani R, et al. Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis in part by enhancing peritoneal macrophage bacterial killing via heme oxygenase-1 induction in rats[J]. Anesthesiology, 2020, 132(1): 140-154.
21
Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial[J]. Stem Cells Transl Med, 2021, 10(5): 660-673.
22
Barcia RN, Santos JM, Filipe M, et al. What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells?[J]. Stem Cells Int, 2015, 2015: 583984.
23
Gorodetsky R, Aicher WK. Allogenic use of human placenta-derived stromal cells as a highly active subtype of mesenchymal stromal cells for cell-based therapies[J]. Int J Mol Sci, 2021, 22(10): 5302.
24
Lv X, Wang L, Zou X, et al. Umbilical cord mesenchymal stem cell therapy for regenerative treatment of rheumatoid arthritis: Opportunities and challenges[J]. Drug Des Devel Ther, 2021, 15: 3927-3936.
25
Jeske R, Yuan X, Fu Q, et al. In vitro culture expansion shifts the immune phenotype of human adipose-derived mesenchymal stem cells[J]. Front Immunol, 2021, 12: 621744.
26
Méndez-ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308): 829-834.
27
Li L, Dong L, Zhang J, et al. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide induced acute respiratory distress syndrome[J]. Int J Mol Med, 2019, 43(3): 1241-1252.
28
Liu AR, Liu L, Chen S, et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type Ⅱ alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro[J]. J Cell Physiol, 2013, 228(6): 1270-1283.
29
Meng SS, Xu XP, Chang W, et al. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning[J]. Stem Cell Res Ther, 2018, 9(1): 280.
30
Xu XP, Huang LL, Hu SL, et al. Genetic Modification of mesenchymal stem cells overexpressing angiotensin Ⅱ type 2 receptor increases cell migration to injured lung in LPS-induced acute lung injury mice[J]. Stem Cells Transl Med, 2018, 7(10): 721-730.
31
Chen J, Li C, Gao X, et al. Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice[J]. PLoS One, 2013, 8(12): e83303.
32
Yang JX, Zhang N, Wang HW, et al. CXCR4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats[J]. J Biol Chem, 2015, 290(4): 1994-2006.
33
Jerkic M, Masterson C, Ormesher L, et al. Overexpression of IL-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis[J]. J Clin Med, 2019, 8(6): 847.
34
Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury[J]. Am J Respir Crit Care Med, 2019, 199(10): 1214-1224.
35
Horie S, Gaynard S, Murphy M, et al. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism[J]. Intensive Care Med Exp, 2020, 8(1): 8.
36
BArtosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells[J]. Cells, 2019, 8(9): 1031.
37
Chen Y, Shu Z, Qian K, et al. Harnessing the properties of biomaterial to enhance the immunomodulation of mesenchymal stem cells[J]. Tissue Eng Part B Rev, 2019, 25(6): 492-499.
38
唐英俊,李华娟,王赛妮,等. 间充质干细胞移植治疗慢性阻塞性肺疾病研究现状[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(6): 836-839.
39
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? [J]. Stem Cell Res Ther, 2016, 7(1): 53.
40
Yamada M. Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases[J]. Respir Investig, 2021, 59(3): 302-311.
41
Dias VL, Braga KAO, Nepomuceno NA, et al. Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor′s lungs after hypovolemic shock [J]. J Bras Pneumol, 2021, 47(4): e20200452.
42
Brennan M, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration[J]. Adv Funct Mater, 2020, 30(37): 1909125.
43
Wysoczynki M, Khan A, Bolli R. New paradigms in cell therapy [J]. Circ Res, 2018, 123(2): 138-158.
44
Averyanov A, Koroleva I, Konoplyannikov M, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline[J]. Stem Cells Transl Med, 2020, 9(1): 6-16.
45
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia[J]. Thorax, 2014, 69(9): 819-825.
46
Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series[J]. Stem Cell Res Ther, 2021, 12(1): 91.
47
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(5): L395-406.
48
Chan MC, Kuok DI, Leung CY, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(13): 3621-3626.
49
Matthay MA, Zhuo H, Gotts JE, et al. Precision medicine for cell therapy in acute respiratory distress syndrome-Authors′reply[J]. Lancet Respir Med, 2019, 7(4): e14.
50
Lalu MM, Mcintyre L, Pugliese C, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials[J]. PLoS One, 2012, 7(10): e47559.
51
Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis[J]. Stem Cell Res Ther, 2021, 12(1): 545.
52
Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation [J]. Cancer Res, 2009, 69(13): 5331-5339.
[1] 罗婷, 张实. 5种生物标志物对ARDS预后的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 471-475.
[2] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[3] 李伟, 卓剑, 黄川, 黄有攀. Lac、HO-1、sRAGE、CRP/ALB表达及脓毒症并发ARDS危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 514-516.
[4] 饶林静, 罗皓梨, 钟山. 不同时长PPV在体外循环心脏大血管术后并发ARDS中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 575-577.
[5] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[6] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[7] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[10] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[14] 陈蕊, 杨洪娜, 方巍, 李鑫鑫, 李甜甜, 于孝义, 王艳雪, 李文玉. 血清与支气管肺泡灌洗液中细胞因子水平与肺内外ARDS的相关性研究[J]. 中华重症医学电子杂志, 2023, 09(03): 251-258.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要