1 |
顾晓凌,宋 勇. 线粒体DNA在急性肺损伤发生、发展中的作用[J/CD]. 中华肺部疾病杂志(电子版), 2012, 5(4): 348-350.
|
2 |
马李杰,李王平,金发光. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
|
3 |
Sweeney RM, Mcauley DF. Acute respiratory distress syndrome[J]. The Lancet, 2016, 388(10058): 2416-2430.
|
4 |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care,and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries[J]. JAMA, 2016, 315(8): 788-800.
|
5 |
Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial[J]. Lancet Respir Med, 2015, 3(1): 24-32.
|
6 |
Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial[J]. Lancet Respir Med, 2019, 7(2): 154-162.
|
7 |
Crop MJ, Baan CC, Korevaar SS, et al. Inflammatory conditions affect gene expression and function of human adipose tissue-derived mesenchymal stem cells[J]. Clin Exp Immunol, 2010, 162(3): 474-486.
|
8 |
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3: 297.
|
9 |
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: immune evasive, not immune privileged[J]. Nat Biotechnol, 2014, 32(3): 252-260.
|
10 |
Monsel A, Zhu YG, Gennai S, et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice[J]. Am J Respir Crit Care Med, 2015, 192(3): 324-336.
|
11 |
Matthay MA, Pati S, Lee JW. Concise review: Mesenchymal stem (Stromal) cells: Biology and preclinical evidence for therapeutic potential for organ dysfunction following trauma or sepsis[J]. Stem Cells, 2017, 35(2): 316-324.
|
12 |
Li JW, Wu X. Mesenchymal stem cells ameliorate LPS-induced acute lung injury through KGF promoting alveolar fluid clearance of alveolar type Ⅱ cells [J]. Eur Rev Med Pharmacol Sci, 2015, 19(13): 2368-2378.
|
13 |
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS[J]. Stem Cells, 2016, 34(8): 2210-2223.
|
14 |
Morrison TJ, Jackson MV, Cunningham EK, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10): 1275-1286.
|
15 |
Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production[J]. Nat Med, 2009, 15(1): 42-49.
|
16 |
Bearden RN, Huggins SS, Cummings KJ, et al. In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: a donor-matched comparative study[J]. Stem Cell Res Ther, 2017, 8(1): 218.
|
17 |
Cortés-araya Y, Amilon K, Rink BE, et al. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue[J]. Stem Cells Dev, 2018, 27(21): 1518-1525.
|
18 |
Chou HC, Chang CH, Chen CH, et al. Consecutive daily administration of intratracheal surfactant and human umbilical cord-derived mesenchymal stem cells attenuates hyperoxia-induced lung injury in neonatal rats[J]. Stem Cell Res Ther, 2021, 12(1): 258.
|
19 |
Horie S, Masterson C, Brady J, et al. Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy[J]. Stem Cell Res Ther, 2020, 11(1):116.
|
20 |
Jerkic M, Gagnon S, Rabani R, et al. Human umbilical cord mesenchymal stromal cells attenuate systemic sepsis in part by enhancing peritoneal macrophage bacterial killing via heme oxygenase-1 induction in rats[J]. Anesthesiology, 2020, 132(1): 140-154.
|
21 |
Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial[J]. Stem Cells Transl Med, 2021, 10(5): 660-673.
|
22 |
Barcia RN, Santos JM, Filipe M, et al. What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells?[J]. Stem Cells Int, 2015, 2015: 583984.
|
23 |
Gorodetsky R, Aicher WK. Allogenic use of human placenta-derived stromal cells as a highly active subtype of mesenchymal stromal cells for cell-based therapies[J]. Int J Mol Sci, 2021, 22(10): 5302.
|
24 |
Lv X, Wang L, Zou X, et al. Umbilical cord mesenchymal stem cell therapy for regenerative treatment of rheumatoid arthritis: Opportunities and challenges[J]. Drug Des Devel Ther, 2021, 15: 3927-3936.
|
25 |
Jeske R, Yuan X, Fu Q, et al. In vitro culture expansion shifts the immune phenotype of human adipose-derived mesenchymal stem cells[J]. Front Immunol, 2021, 12: 621744.
|
26 |
Méndez-ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche[J]. Nature, 2010, 466(7308): 829-834.
|
27 |
Li L, Dong L, Zhang J, et al. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide induced acute respiratory distress syndrome[J]. Int J Mol Med, 2019, 43(3): 1241-1252.
|
28 |
Liu AR, Liu L, Chen S, et al. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type Ⅱ alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro[J]. J Cell Physiol, 2013, 228(6): 1270-1283.
|
29 |
Meng SS, Xu XP, Chang W, et al. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning[J]. Stem Cell Res Ther, 2018, 9(1): 280.
|
30 |
Xu XP, Huang LL, Hu SL, et al. Genetic Modification of mesenchymal stem cells overexpressing angiotensin Ⅱ type 2 receptor increases cell migration to injured lung in LPS-induced acute lung injury mice[J]. Stem Cells Transl Med, 2018, 7(10): 721-730.
|
31 |
Chen J, Li C, Gao X, et al. Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice[J]. PLoS One, 2013, 8(12): e83303.
|
32 |
Yang JX, Zhang N, Wang HW, et al. CXCR4 receptor overexpression in mesenchymal stem cells facilitates treatment of acute lung injury in rats[J]. J Biol Chem, 2015, 290(4): 1994-2006.
|
33 |
Jerkic M, Masterson C, Ormesher L, et al. Overexpression of IL-10 enhances the efficacy of human umbilical-cord-derived mesenchymal stromal cells in E. coli pneumosepsis[J]. J Clin Med, 2019, 8(6): 847.
|
34 |
Islam D, Huang Y, Fanelli V, et al. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury[J]. Am J Respir Crit Care Med, 2019, 199(10): 1214-1224.
|
35 |
Horie S, Gaynard S, Murphy M, et al. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism[J]. Intensive Care Med Exp, 2020, 8(1): 8.
|
36 |
BArtosh TJ, Ylostalo JH. Efficacy of 3D culture priming is maintained in human mesenchymal stem cells after extensive expansion of the cells[J]. Cells, 2019, 8(9): 1031.
|
37 |
Chen Y, Shu Z, Qian K, et al. Harnessing the properties of biomaterial to enhance the immunomodulation of mesenchymal stem cells[J]. Tissue Eng Part B Rev, 2019, 25(6): 492-499.
|
38 |
唐英俊,李华娟,王赛妮,等. 间充质干细胞移植治疗慢性阻塞性肺疾病研究现状[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(6): 836-839.
|
39 |
Abreu SC, Weiss DJ, Rocco PR. Extracellular vesicles derived from mesenchymal stromal cells: a therapeutic option in respiratory diseases? [J]. Stem Cell Res Ther, 2016, 7(1): 53.
|
40 |
Yamada M. Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases[J]. Respir Investig, 2021, 59(3): 302-311.
|
41 |
Dias VL, Braga KAO, Nepomuceno NA, et al. Soluble factors of mesenchimal stem cells (FS-MSC) as a potential tool to reduce inflammation in donor′s lungs after hypovolemic shock [J]. J Bras Pneumol, 2021, 47(4): e20200452.
|
42 |
Brennan M, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration[J]. Adv Funct Mater, 2020, 30(37): 1909125.
|
43 |
Wysoczynki M, Khan A, Bolli R. New paradigms in cell therapy [J]. Circ Res, 2018, 123(2): 138-158.
|
44 |
Averyanov A, Koroleva I, Konoplyannikov M, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline[J]. Stem Cells Transl Med, 2020, 9(1): 6-16.
|
45 |
Asmussen S, Ito H, Traber DL, et al. Human mesenchymal stem cells reduce the severity of acute lung injury in a sheep model of bacterial pneumonia[J]. Thorax, 2014, 69(9): 819-825.
|
46 |
Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series[J]. Stem Cell Res Ther, 2021, 12(1): 91.
|
47 |
Gotts JE, Abbott J, Matthay MA. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(5): L395-406.
|
48 |
Chan MC, Kuok DI, Leung CY, et al. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo[J]. Proc Natl Acad Sci U S A, 2016, 113(13): 3621-3626.
|
49 |
Matthay MA, Zhuo H, Gotts JE, et al. Precision medicine for cell therapy in acute respiratory distress syndrome-Authors′reply[J]. Lancet Respir Med, 2019, 7(4): e14.
|
50 |
Lalu MM, Mcintyre L, Pugliese C, et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials[J]. PLoS One, 2012, 7(10): e47559.
|
51 |
Wang Y, Yi H, Song Y. The safety of MSC therapy over the past 15 years: a meta-analysis[J]. Stem Cell Res Ther, 2021, 12(1): 545.
|
52 |
Rosland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation [J]. Cancer Res, 2009, 69(13): 5331-5339.
|