切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 593 -596. doi: 10.3877/cma.j.issn.1674-6902.2022.04.041

综述

茶多酚防治肺动脉高压的研究进展
毕先金1, 王瑞2, 伍鼎建1, 张学森1,()   
  1. 1. 625000 雅安,中国人民解放军联勤保障部队第九四五医院心肾内科
    2. 625000 雅安,中国人民解放军联勤保障部队第九四五医院消化内科
  • 收稿日期:2021-11-16 出版日期:2022-08-25
  • 通信作者: 张学森

Progress of tea polyphenols to prevent pulmonary hypertension

Xianjin Bi1, Rui Wang2, Dingjian Wu1   

  • Received:2021-11-16 Published:2022-08-25
引用本文:

毕先金, 王瑞, 伍鼎建, 张学森. 茶多酚防治肺动脉高压的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 593-596.

Xianjin Bi, Rui Wang, Dingjian Wu. Progress of tea polyphenols to prevent pulmonary hypertension[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 593-596.

高原是指海拔超过3 000 m的地区,与平原地区相比,高原低氧、低温、低压环境给高原常驻居民带来严重的健康威胁[1,2],引起诸多高原相关性疾病。其中,发病率最高、危害最显著的为高原性心脏病[3]。肺动脉高压(pulmonary arterial hypertension, PAH)是高原性心脏病发生和发展的关键环节[4],研究PAH的机制和对其进行有效防控具有非常重要的临床意义。肺血管活性物质的失衡(如血栓素A2、内皮素-1、前列环素、一氧化氮等)和肺血管细胞钾、钠、钙等离子通道的异常,以及肺血管细胞异常增殖和非编码RNA调控等机制在PAH的发生和发展中扮演重要角色[5,6,7,8]。细胞衰老、免疫和炎症、细胞代谢改变等多种机制在PAH的发生和发展中的作用愈发突出[9,10,11]。茶叶中含有丰富的多酚、氨基酸、维生素、糖苷等营养成分,是一种具有很高营养价值和药用价值的世界性饮料,其主要活性物质为茶多酚(tea polyphenol, TP)[12]。TP具有显著的心血管保护作用,并且具有抗氧化应激、抗衰老、调节免疫、调节细胞代谢等多种作用[13,14,15]。因此,本文对PAH发生和进展的新机制以及TP发挥PAH保护作用作一综述。

1
Lichtblau M, Saxer S, Furian M, et al. Cardiac function and pulmonary hypertension in Central Asian highlanders at 3250 m[J]. Eur Respir J, 2020, 56(2):1902474.
2
Wang M, Liu M, Huang J, et al. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases[J]. High Alt Med Biol, 2021, 22(3): 285-292.
3
Giussani DA. Breath of life: Heart disease link to developmental hypoxia[J]. Circulation, 2021, 144(17): 1429-1443.
4
徐康乔,夏世金. 低氧性肺动脉高压发生机制与诊治新策略[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(2): 127-133.
5
Dhoble S, Patravale V, Weaver E, et al. Comprehensive review on novel targets and emerging therapeutic modalities for pulmonary arterial Hypertension[J]. Int J Pharm, 2022, 621: 121792.
6
Aldred MA, Morrell NW, Guignabert C. New mutations and pathogenesis of pulmonary hypertension: Progress and puzzles in disease pathogenesis[J]. Circ Res, 2022, 130(9): 1365-1381.
7
Xiao Y, Chen PP, Zhou RL, et al. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: A review[J]. Aging Dis, 2020, 11(6): 1623-1639.
8
Hou S, Chen D, Liu J, et al. Profiling and molecular mechanism analysis of long non-coding RNAs and mRNAs in pulmonary arterial hypertension rat models[J]. Front Pharmacol, 2021, 12: 709816.
9
Roger I, Milara J, Belhadj N, et al. Senescence alterations in pulmonary hypertension[J]. Cells, 2021, 10(12): 3456.
10
Wang RR, Yuan TY, Wang JM, et al. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective[J]. Pharmacol Res, 2022, 180: 106238.
11
Shi J, Yang Y, Cheng A, et al. Metabolism of vascular smooth muscle cells in vascular diseases[J]. Am J Physiol Heart Circ Physiol, 2020, 319(3): H613-h631.
12
Hong M, Cheng L, Liu Y, et al. A natural plant source-tea polyphenols,a potential drug for improving immunity and combating virus[J]. Nutrients, 2022, 14(3): 550.
13
Winiarska-mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, anti-inflammatory, and immunomodulatory properties of tea-the positive impact of tea consumption on patients with autoimmune diabetes[J]. Nutrients, 2021, 13(11): 3972.
14
Bag S, Mondal A, Majumder A, et al. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals[J]. Food chemistry, 2022, 371: 131098.
15
Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols:Structure-activity relationship[J]. Int J Mol Sci, 2021, 22(17): 9109.
16
Mehdizadeh M, Aguilar M, Thorin E, et al. The role of cellular senescence in cardiac disease: basic biology and clinical relevance[J]. Nat Rev Cardiol, 2022, 19(4): 250-264.
17
Van der Feen DE, Berger RMF, Bartelds B. Converging paths of pulmonary arterial hypertension and cellular senescence[J]. Am J Respir Cell Mol Biol, 2019, 61(1): 11-20.
18
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.
19
Wang Z, Yang K, Zheng Q, et al. Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1): L216-228.
20
Van der Feen DE, Bossers GPL, Hagdorn QAJ, et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension[J]. Sci Transl Med, 2020, 12(554): eaaw4974.
21
Sánchez-Gloria JL, CARBó R, Buelna-Chontal M, et al. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α,IL-1β,and IL-6[J]. Life sciences, 2021, 287: 120091.
22
Khan SY, Awad EM, oszwald A, et al. Premature senescence of endothelial cells upon chronic exposure to TNF-α can be prevented by N-acetyl cysteine and plumericin[J]. Sci Rep, 2017, 7: 39501.
23
Samarakoon R, Higgins SP, Higgins CE, et al. The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: Role of Caveolin-1 [J]. Biomolecules, 2019, 9(8): 341.
24
Hong X, Wang L, Zhang K, et al. Molecular mechanisms of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis [J]. Cells, 2022, 11(5): 877.
25
Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease [J]. Nat commun, 2017, 8: 14532.
26
Song D, Zhao M, Feng L, et al. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production[J]. Biomed Pharmacother, 2021, 142: 111949.
27
Zhu X, Zhang C, Shi M, et al. IL-6/STAT3-mediated autophagy participates in the development of age-related glomerulosclerosis[J]. J Biochem Mol Toxicol, 2021, 35(4): e22698.
28
Mavrogonatou E, Konstantinou A, Kletsas D. Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence[J]. Biogerontology, 2018, 19(3-4): 237-249.
29
D′alessandro A, El Kasmi KC, Plecitá-Hlavatá L, et al. Hallmarks of pulmonary hypertension: Mesenchymal and inflammatory cell metabolic reprogramming[J]. Antioxid Redox Signal, 2018, 28(3): 230-250.
30
Luís Pedro Baptista de Barros Ribeiro Dourado, Santos M, Moreira-Gonçalves Daniel. Nets, pulmonary arterial hypertension, and thrombo-inflammation[J]. J Mol Med (Berl), 2022, 100(5): 713-722.
31
Marsh LM, Jandl K, Grünig G, et al. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51(1): 1701214.
32
Calvier L, Chouvarine P, Legchenko E, et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism[J]. Cell Metab, 2017, 25(5): 1118-34.e7.
33
Van Uden D, Koudstaal T, Van Hulst JAC, et al. Central role of dendritic cells in pulmonary arterial hypertension in human and mice[J]. Int J Mol Sci, 2021, 22(4): 1756.
34
Zawia A, Arnold ND, West L, et al. Altered macrophage polarization induces experimental pulmonary hypertension and is observed in patients with pulmonary arterial hypertension[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1): 430-445.
35
Batool M, Berghausen EM, Zierden M, et al. The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice[J]. Basic Res Cardiol, 2020, 115(6): 68.
36
Rong W, Liu C, Li X, et al. Caspase-8 promotes pulmonary hypertension by activating macrophage-associated inflammation and IL-1β (Interleukin 1β) production[J]. Arterioscler Thromb Vasc Biol, 2022, 42(5): 613-631.
37
Schweitzer F, Tarantelli R, Rayens E, et al. Monocyte and alveolar macrophage skewing is associated with the development of pulmonary arterial hypertension in a primate model of HIV infection[J]. AIDS Res Hum Retroviruses, 2019, 35(1): 63-74.
38
Zhang Y, Wang Y. Cell-to-cell crosstalk: A new insight into pulmonary hypertension[J]. Rev Physiol Biochem Pharmacol, 2022, doi: 10.1007/112_2022_70.
39
Han S, Chandel NS. Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis[J]. Am J Respir Cell Mol Biol, 2021, 65(2): 134-145.
40
Cool CD, Kuebler WM, Bogaard HJ, et al. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(6): L1115-1130.
41
Liang S, Yegambaram M, Wang T, et al. Mitochondrial metabolism, redox, and calcium homeostasis in pulmonary arterial hypertension[J]. Biomedicines, 2022, 10(2): 341.
42
Yang D, Ying J, Wang X, et al. Mitochondrial dynamics: A key role in neurodegeneration and a potential target for neurodegenerative disease[J]. Front Neurosci, 2021, 15: 654785.
43
Veerman GDM, Van der Werff SC, Koolen SLW, et al. The influence of green tea extract on nintedanib's bioavailability in patients with pulmonary fibrosis[J]. Biomed Pharmacother, 2022, 151: 113101.
44
Yin B, Lian R, Li Z, et al. Tea Polyphenols enhanced the antioxidant capacity and induced hsps to relieve heat stress injury[J]. Oxid Med Cell Longev, 2021, 2021: 9615429.
45
Li Z, Liu Y, Zhao W, et al. Pathogenic effects and potential regulatory nechanisms of tea polyphenols on obesity[J]. Biomed Res Int, 2019, 2019: 2579734.
46
Rudrapal M, Khairnar S J, Khan J, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action[J]. Front Pharmacol, 2022, 13: 806470.
47
Ayaz M, Sadiq A, Junaid M, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders[J]. Frontiers in aging neuroscience, 2019, 11: 155.
48
Tian J, Geiss C, Zarse K, et al. Green tea catechins EGCG and ECG enhance the fitness and lifespan of caenorhabditis elegans by complex I inhibition[J]. Aging (Albany NY), 2021, 13(19): 22629-22648.
49
Li Q, Qiu Z, Wang Y, et al. Tea polyphenols alleviate hydrogen peroxide-induced oxidative stress damage through the Mst/Nrf2 axis and the Keap1/Nrf2/HO-1 pathway in murine RAW264.7 cells[J]. Exp Ther Med, 2021, 22(6): 1473.
50
Fan X, Xiao X, Mao X, et al. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways[J]. IUBMB Life, 2021, 73(2): 328-340.
51
Lakshmi SP, Reddy AT, Kodidhela LD, et al. The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification[J]. Arch Biochem Biophys, 2020, 695: 108620.
52
胡明冬,李 琦,贺斌峰,等. 高原不同海拔暴露对肺通气功能及代偿能力的影响[J/CD]. 中华肺部疾病杂志(电子版), 2017, 10(1): 10-14.
[1] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[2] 朱佑君, 付万垒, 毛杨, 李德峰. 细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 356-362.
[3] 张艺萱, 罗金丹, 葛小丽, 钟红琴. 先天性心脏病伴PH血清H-FABP、NT-proBNP与肺动脉内径、血流速度及PASP的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 252-255.
[4] 陈晓毅, 尹雪霞, 刘静, 邬国松. 阻塞性睡眠呼吸暂停低通气综合征并发肺动脉高压的危险因素及预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 41-45.
[5] 刘玉强, 吴秀秀, 李晓辉, 王瑜, 韩国霖, 张伟, 王俊芝, 侯春霞. 瑞舒伐他汀钙联合激素气道雾化对AECOPD并发肺动脉高压的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 670-672.
[6] 苏小慧, 宋新雅, 鱼帆, 丁小涵, 卞士柱. 高原肺动脉高压机制与药物治疗进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 742-747.
[7] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[8] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[9] 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 1-5.
[10] 吴欣, 袁晓晨, 沈慧, 秦建华. 三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究[J]. 中华临床医师杂志(电子版), 2024, 18(03): 259-267.
[11] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[12] 王金志, 陶新曹, 谢万木, 傅志辉, 赵蕴伟, 黄强, 翟振国. 球囊肺动脉成形术在慢性血栓栓塞性肺动脉高压治疗中的进展[J]. 中华介入放射学电子杂志, 2023, 11(03): 262-267.
[13] 孟丽君, 宋芹, 邵莉, 李健. 系统性红斑狼疮合并肺动脉高压患者外周血T淋巴细胞亚群水平变化及临床意义[J]. 中华诊断学电子杂志, 2024, 12(01): 38-43.
[14] 王靖玺, 赵丽, 吕滨. 人工智能在肺栓塞CT检查中的临床研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 26-31.
[15] 张明杰, 柳立平, 李春香, 刘玉洁, 徐卓明. 先天性心脏病术后早期一氧化氮吸入治疗的有效性和安全性评价[J]. 中华心脏与心律电子杂志, 2023, 11(04): 210-215.
阅读次数
全文


摘要