1 |
Lichtblau M, Saxer S, Furian M, et al. Cardiac function and pulmonary hypertension in Central Asian highlanders at 3250 m[J]. Eur Respir J, 2020, 56(2):1902474.
|
2 |
Wang M, Liu M, Huang J, et al. Long-term high-altitude exposure does not increase the incidence of atrial fibrillation associated with organic heart diseases[J]. High Alt Med Biol, 2021, 22(3): 285-292.
|
3 |
Giussani DA. Breath of life: Heart disease link to developmental hypoxia[J]. Circulation, 2021, 144(17): 1429-1443.
|
4 |
徐康乔,夏世金. 低氧性肺动脉高压发生机制与诊治新策略[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(2): 127-133.
|
5 |
Dhoble S, Patravale V, Weaver E, et al. Comprehensive review on novel targets and emerging therapeutic modalities for pulmonary arterial Hypertension[J]. Int J Pharm, 2022, 621: 121792.
|
6 |
Aldred MA, Morrell NW, Guignabert C. New mutations and pathogenesis of pulmonary hypertension: Progress and puzzles in disease pathogenesis[J]. Circ Res, 2022, 130(9): 1365-1381.
|
7 |
Xiao Y, Chen PP, Zhou RL, et al. Pathological mechanisms and potential therapeutic targets of pulmonary arterial hypertension: A review[J]. Aging Dis, 2020, 11(6): 1623-1639.
|
8 |
Hou S, Chen D, Liu J, et al. Profiling and molecular mechanism analysis of long non-coding RNAs and mRNAs in pulmonary arterial hypertension rat models[J]. Front Pharmacol, 2021, 12: 709816.
|
9 |
Roger I, Milara J, Belhadj N, et al. Senescence alterations in pulmonary hypertension[J]. Cells, 2021, 10(12): 3456.
|
10 |
Wang RR, Yuan TY, Wang JM, et al. Immunity and inflammation in pulmonary arterial hypertension: From pathophysiology mechanisms to treatment perspective[J]. Pharmacol Res, 2022, 180: 106238.
|
11 |
Shi J, Yang Y, Cheng A, et al. Metabolism of vascular smooth muscle cells in vascular diseases[J]. Am J Physiol Heart Circ Physiol, 2020, 319(3): H613-h631.
|
12 |
Hong M, Cheng L, Liu Y, et al. A natural plant source-tea polyphenols,a potential drug for improving immunity and combating virus[J]. Nutrients, 2022, 14(3): 550.
|
13 |
Winiarska-mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, anti-inflammatory, and immunomodulatory properties of tea-the positive impact of tea consumption on patients with autoimmune diabetes[J]. Nutrients, 2021, 13(11): 3972.
|
14 |
Bag S, Mondal A, Majumder A, et al. Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals[J]. Food chemistry, 2022, 371: 131098.
|
15 |
Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols:Structure-activity relationship[J]. Int J Mol Sci, 2021, 22(17): 9109.
|
16 |
Mehdizadeh M, Aguilar M, Thorin E, et al. The role of cellular senescence in cardiac disease: basic biology and clinical relevance[J]. Nat Rev Cardiol, 2022, 19(4): 250-264.
|
17 |
Van der Feen DE, Berger RMF, Bartelds B. Converging paths of pulmonary arterial hypertension and cellular senescence[J]. Am J Respir Cell Mol Biol, 2019, 61(1): 11-20.
|
18 |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827.
|
19 |
Wang Z, Yang K, Zheng Q, et al. Divergent changes of p53 in pulmonary arterial endothelial and smooth muscle cells involved in the development of pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 316(1): L216-228.
|
20 |
Van der Feen DE, Bossers GPL, Hagdorn QAJ, et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension[J]. Sci Transl Med, 2020, 12(554): eaaw4974.
|
21 |
Sánchez-Gloria JL, CARBó R, Buelna-Chontal M, et al. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α,IL-1β,and IL-6[J]. Life sciences, 2021, 287: 120091.
|
22 |
Khan SY, Awad EM, oszwald A, et al. Premature senescence of endothelial cells upon chronic exposure to TNF-α can be prevented by N-acetyl cysteine and plumericin[J]. Sci Rep, 2017, 7: 39501.
|
23 |
Samarakoon R, Higgins SP, Higgins CE, et al. The TGF-β1/p53/PAI-1 signaling axis in vascular senescence: Role of Caveolin-1 [J]. Biomolecules, 2019, 9(8): 341.
|
24 |
Hong X, Wang L, Zhang K, et al. Molecular mechanisms of alveolar epithelial stem cell senescence and senescence-associated differentiation disorders in pulmonary fibrosis [J]. Cells, 2022, 11(5): 877.
|
25 |
Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease [J]. Nat commun, 2017, 8: 14532.
|
26 |
Song D, Zhao M, Feng L, et al. Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production[J]. Biomed Pharmacother, 2021, 142: 111949.
|
27 |
Zhu X, Zhang C, Shi M, et al. IL-6/STAT3-mediated autophagy participates in the development of age-related glomerulosclerosis[J]. J Biochem Mol Toxicol, 2021, 35(4): e22698.
|
28 |
Mavrogonatou E, Konstantinou A, Kletsas D. Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence[J]. Biogerontology, 2018, 19(3-4): 237-249.
|
29 |
D′alessandro A, El Kasmi KC, Plecitá-Hlavatá L, et al. Hallmarks of pulmonary hypertension: Mesenchymal and inflammatory cell metabolic reprogramming[J]. Antioxid Redox Signal, 2018, 28(3): 230-250.
|
30 |
Luís Pedro Baptista de Barros Ribeiro Dourado, Santos M, Moreira-Gonçalves Daniel. Nets, pulmonary arterial hypertension, and thrombo-inflammation[J]. J Mol Med (Berl), 2022, 100(5): 713-722.
|
31 |
Marsh LM, Jandl K, Grünig G, et al. The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51(1): 1701214.
|
32 |
Calvier L, Chouvarine P, Legchenko E, et al. PPARγ links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism[J]. Cell Metab, 2017, 25(5): 1118-34.e7.
|
33 |
Van Uden D, Koudstaal T, Van Hulst JAC, et al. Central role of dendritic cells in pulmonary arterial hypertension in human and mice[J]. Int J Mol Sci, 2021, 22(4): 1756.
|
34 |
Zawia A, Arnold ND, West L, et al. Altered macrophage polarization induces experimental pulmonary hypertension and is observed in patients with pulmonary arterial hypertension[J]. Arterioscler Thromb Vasc Biol, 2021, 41(1): 430-445.
|
35 |
Batool M, Berghausen EM, Zierden M, et al. The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice[J]. Basic Res Cardiol, 2020, 115(6): 68.
|
36 |
Rong W, Liu C, Li X, et al. Caspase-8 promotes pulmonary hypertension by activating macrophage-associated inflammation and IL-1β (Interleukin 1β) production[J]. Arterioscler Thromb Vasc Biol, 2022, 42(5): 613-631.
|
37 |
Schweitzer F, Tarantelli R, Rayens E, et al. Monocyte and alveolar macrophage skewing is associated with the development of pulmonary arterial hypertension in a primate model of HIV infection[J]. AIDS Res Hum Retroviruses, 2019, 35(1): 63-74.
|
38 |
Zhang Y, Wang Y. Cell-to-cell crosstalk: A new insight into pulmonary hypertension[J]. Rev Physiol Biochem Pharmacol, 2022, doi: 10.1007/112_2022_70.
|
39 |
Han S, Chandel NS. Lessons from cancer metabolism for pulmonary arterial hypertension and fibrosis[J]. Am J Respir Cell Mol Biol, 2021, 65(2): 134-145.
|
40 |
Cool CD, Kuebler WM, Bogaard HJ, et al. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(6): L1115-1130.
|
41 |
Liang S, Yegambaram M, Wang T, et al. Mitochondrial metabolism, redox, and calcium homeostasis in pulmonary arterial hypertension[J]. Biomedicines, 2022, 10(2): 341.
|
42 |
Yang D, Ying J, Wang X, et al. Mitochondrial dynamics: A key role in neurodegeneration and a potential target for neurodegenerative disease[J]. Front Neurosci, 2021, 15: 654785.
|
43 |
Veerman GDM, Van der Werff SC, Koolen SLW, et al. The influence of green tea extract on nintedanib's bioavailability in patients with pulmonary fibrosis[J]. Biomed Pharmacother, 2022, 151: 113101.
|
44 |
Yin B, Lian R, Li Z, et al. Tea Polyphenols enhanced the antioxidant capacity and induced hsps to relieve heat stress injury[J]. Oxid Med Cell Longev, 2021, 2021: 9615429.
|
45 |
Li Z, Liu Y, Zhao W, et al. Pathogenic effects and potential regulatory nechanisms of tea polyphenols on obesity[J]. Biomed Res Int, 2019, 2019: 2579734.
|
46 |
Rudrapal M, Khairnar S J, Khan J, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action[J]. Front Pharmacol, 2022, 13: 806470.
|
47 |
Ayaz M, Sadiq A, Junaid M, et al. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders[J]. Frontiers in aging neuroscience, 2019, 11: 155.
|
48 |
Tian J, Geiss C, Zarse K, et al. Green tea catechins EGCG and ECG enhance the fitness and lifespan of caenorhabditis elegans by complex I inhibition[J]. Aging (Albany NY), 2021, 13(19): 22629-22648.
|
49 |
Li Q, Qiu Z, Wang Y, et al. Tea polyphenols alleviate hydrogen peroxide-induced oxidative stress damage through the Mst/Nrf2 axis and the Keap1/Nrf2/HO-1 pathway in murine RAW264.7 cells[J]. Exp Ther Med, 2021, 22(6): 1473.
|
50 |
Fan X, Xiao X, Mao X, et al. Tea bioactive components prevent carcinogenesis via anti-pathogen, anti-inflammation, and cell survival pathways[J]. IUBMB Life, 2021, 73(2): 328-340.
|
51 |
Lakshmi SP, Reddy AT, Kodidhela LD, et al. The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification[J]. Arch Biochem Biophys, 2020, 695: 108620.
|
52 |
胡明冬,李 琦,贺斌峰,等. 高原不同海拔暴露对肺通气功能及代偿能力的影响[J/CD]. 中华肺部疾病杂志(电子版), 2017, 10(1): 10-14.
|