1 |
吴国明,钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
|
2 |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA: A Cancer J Clin, 2020, 70(1): 7-30.
|
3 |
Jiang F, Liang M, Huang X, et al. High expression of PIMREG predicts poor survival outcomes and is correlated with immune infiltrates in lung adenocarcinoma[J]. Peer J, 2017, 9: e11697.
|
4 |
陈艳丽,王媛媛,张 勇,等. 中晚期非小细胞肺癌患者化疗前后T淋巴细胞亚群表达差异分析及临床意义[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(1): 13-17.
|
5 |
中华医学会肿瘤学分会,中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南(2021版)[J]. 中华肿瘤杂志,2021, 43(6): 591-621.
|
6 |
Torre LA, Siegel RL, Jemal A. Lung cancer statistics.[J]. Adv Exper Med Biol, 2016, 893: 1-19.
|
7 |
Yue Y, Cui J, Zhao Y, et al. Circ_101341 deteriorates the progression of clear cell renal cell carcinoma through the miR- 411/EGLN3 axis[J]. Cancer Manag Res, 2020, 12: 13513-13525.
|
8 |
Xie L, Xiao K, Whalen EJ, et al. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL[J]. Sci Signal, 2009, 2(78): ra33.
|
9 |
Luo W, Hu H, Chang R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1[J]. Cell, 2011, 145(5): 732-744.
|
10 |
Chen N, Rinner O, Czernik D, et al. The oxygen sensor PHD3 limits glycolysis under hypoxia via direct binding to pyruvate kinase[J]. Cell Res, 2011, 21(6): 983-986.
|
11 |
Xie L, Pi X, Mishra A, et al. PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response[J]. J Clin Invest, 2012,122(8): 2827-2836.
|
12 |
Yan B, Jiao S, Zhang HS, et al. Prolyl hydroxylase domain protein 3 targets Pax2 for destruction[J]. Biochem Biophys Res Commun, 2011, 409(2): 315-320.
|
13 |
Su Y, Loos M, Giese N, et al. PHD3 regulates differentiation, tumour growth and angiogenesis in pancreatic cancer[J]. Br J Cancer, 2010, 103(10): 1571-1579.
|
14 |
Schlisio S, Kenchappa RS, Vredeveld L, et al. The kinesin KIF1Bβ acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor[J]. Genes Development, 2008, 22(7): 884-893.
|
15 |
Jr. WGK, Bommi-Reddy A, Schlisio S. Inhibitors of egln3 activity for the treatment of neurodegenerative disorders: EP, EP1912637 A2[P]. 2010.
|
16 |
Li S, Rodriguez J, Li W, et al. EglN3 hydroxylase stabilizes BIM-EL linking VHL type 2C mutations to pheochromocytoma pathogenesis and chemotherapy resistance[J]. Proc Natl Acad Sci U S A, 2019, 116(34): 16997-17006.
|
17 |
Wang Y, Li X, Liu W, et al. MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer[J]. Oncogene, 2019, 38(24): 4820-4834.
|
18 |
Pescador N, Cuevas Y, Naranjo S, et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene[J]. Biochem J, 2005, 390(1): 189-197.
|
19 |
蔡凤琳,邓靖宇. EGLN3在肿瘤发生发展中作用的研究进展[J]. 天津医科大学学报,2020, 26(6): 5.
|
20 |
Kim KH, Lee HH, Yoon YE, et al. Prolyl hydroxylase-3 is a novel renal cell carcinoma biomarker[J]. Investig Clin Urol, 2019, 60(6): 425-431.
|
21 |
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci U S A, 2005, 102(43): 15545-15550.
|
22 |
Canzler S, Hackermüller J. multiGSEA: a GSEA-based pathway enrichment analysis for multi-omics data[J]. BMC Bioinformatics, 2020, 21(1): 561.
|
23 |
Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis?[J]. Nat Rev Cancer, 2004, 4(11): 891-899.
|
24 |
Harris AL. Hypoxia-a key regulatory factor in tumour growth[J]. Nat Rev Cancer, 2002, 2(1): 38-47.
|
25 |
Semenza GL. Targeting HIF-1 for cancer therapy[J]. Nat Rev Cancer,2003, 3(10): 721-732.
|
26 |
Frey L, Klümper N, Schmidt D, et al. CircEHD2, CircNETO2 and CircEGLN3 as diagnostic and prognostic biomarkers for patients with renal cell carcinoma[J]. Cancers, 2021, 13(9): 2177.
|
27 |
Melillo G. Targeting hypoxia cell signaling for cancer therapy[J]. Cancer Metastasis Rev, 2007, 26(2): 341-352.
|
28 |
Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics[J]. Oncogene, 2010, 29(5): 625-634.
|
29 |
Wheaton WW, Chandel NS. Hypoxia.2.Hypoxia regulates cellular metabolism[J]. Am J Physiol Cell Physiol, 2011, 300(3): C385-C393.
|
30 |
Epstein AC, Gleadle JM, McNeill LA, et al. C.elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation[J]. Cell, 2001, 107(1): 43-54.
|
31 |
Huang J, Zhao Q, Mooney SM, et al. Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1,PHD2,and PHD3[J]. J Biol Chem, 2002, 277(42): 39792-39800.
|
32 |
Lee S, Nakamura E, Yang H, et al. Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer[J]. Cancer Cell, 2005, 8(2): 155-167.
|
33 |
Lin L, Lin L, Cai J. Circular RNA circ-EGLN3 promotes renal cell carcinoma proliferation and aggressiveness via miR-1299-mediated IRF7 activation[J]. J Cell Biochem, 2020, 121(11): 4377-4385.
|
34 |
Xia YJ, Jiang XT, Jiang SB, et al. PHD3 affects gastric cancer progression by negatively regulating HIF1A[J]. Mol Med Rep, 2017, 16(5): 6882.
|
35 |
Mao K, You C, Lei D, et al. Potential regulation of glioma through the induction of apoptosis signaling via Egl-9 family hypoxia-inducible factor 3[J]. Oncol Lett, 2017, 13(2): 893-897.
|
36 |
Li J, Chen C, Li C, et al. Genome-wide knockout screen identifies EGLN3 involving in ammonia neurotoxicity[J]. Front Cell Dev Biol, 2022, 10: 820692.
|
37 |
Fu J. Catalytic-independent inhibition of cIAP1-mediated RIP1 ubiquitination by EGLN3[J]. Cell Signal, 2016, 28(2): 72-80.
|
38 |
Zhong C, Li S, Li J, et al. Polymorphisms in the Egl nine homolog 3 (EGLN3) and Peroxisome proliferator activated receptor-alpha (PPARα) genes and their correlation with hypoxia adaptation in Tibetan chickens[J]. PLoS One, 2018, 13(3): e0194156.
|