切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (02) : 293 -295. doi: 10.3877/cma.j.issn.1674-6902.2023.02.040

综述

外泌体miRNA对肺结节的诊断进展
郑晴晴1, 王剑2,(), 阳韬3,()   
  1. 1. 212002 镇江,江苏大学医学院
    2. 212002 镇江,江苏大学附属人民医院·镇江市第一人民医院呼吸及危重症学科
    3. 212002 镇江,江苏大学附属人民医院·镇江市第一人民医院呼吸及危重症学科;210029 南京,南京医科大学第一附属医院·江苏省人民医院
  • 收稿日期:2022-09-13 出版日期:2023-04-25
  • 通信作者: 王剑, 阳韬
  • 基金资助:
    镇江市社会发展项目(SH2020047)

Diagnosis progression of exosomal miRNA on pulmonary nodules

Qingqing Zheng1, Jian Wang2(), Tao Yan3()   

  • Received:2022-09-13 Published:2023-04-25
  • Corresponding author: Jian Wang, Tao Yan
引用本文:

郑晴晴, 王剑, 阳韬. 外泌体miRNA对肺结节的诊断进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 293-295.

Qingqing Zheng, Jian Wang, Tao Yan. Diagnosis progression of exosomal miRNA on pulmonary nodules[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(02): 293-295.

肺结节是肺部最大直径小于3 cm的圆形或类圆形结节,分为实性结节和亚实性结节,其中亚实性结节分为磨玻璃结节和部分实性结节,在人群中高发,近年来检出率逐渐上升,是肺癌的重要病变之一,明确其良恶性对疾病早期诊疗具有重要作用[1]。目前临床上常用的诊断方法有低剂量螺旋CT、PET/CT、痰脱落细胞学检查、支气管镜检查、胸腔镜检查、针吸细胞学检查及肿瘤标记物等检查。低剂量螺旋CT对肺癌的敏感性高,假阳性率高;PET/CT对肺癌诊断敏感性高于低剂量CT,花费高;胸腔镜、支气管镜、肺穿刺为有创检查,临床并发症多;肿瘤标志物特异性低,癌症及非癌症患者中可检测,找到具有低创伤性,高特异性和敏感性的肺癌诊断手段和指标很重要[2,3]。外泌体miRNA参与肺部多种疾病,肺癌形成过程,如细胞上皮-间质转化(epithelial mesenchymal transformation, EMT)、免疫功能和肺癌微环境,为临床治疗提供了新思路[4]。外泌体miRNA作为潜在的生物标志物,对肺癌早期诊断具有重大意义,本文就外泌体miRNA对肺结节良恶性诊断进展作一综述。

1
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule:A review[J]. JAMA, 2022, 327(3): 264-273.
2
Liu QX, Zhou D, Han TC, et al. A noninvasive multianalytical approach for lung cancer diagnosis of patients with pulmonary nodules[J]. Adv Sci (Weinh), 2021, 8(13): 2100104.
3
Chen K, Kang G, Zhao H, et al. Liquid biopsy in newly diagnosed patients with locoregional (Ⅰ-ⅢA) non-small cell lung cancer[J]. Expert Rev Mol Diagn, 2019, 19(5): 419-427.
4
Xu K, Zhang C, Du T, et al. Progress of exosomes in the diagnosis and treatment of lung cancer[J]. Biomed Pharmacother, 2021, 134: 111111.
5
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function?[J]. Genomics Proteomics Bioinformatics, 2015, 13(1): 17-24.
6
Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory mechanism of microRNA expression in cancer[J]. Int J Mol Sci, 2020, 21(5): 1723.
7
ElKashef SMMAE, Ahmad SE, Soliman YMA, et al. Role of microRNA-21 and microRNA-155 as biomarkers for bronchial asthma[J]. Innate Immun, 2021, 27(1): 61-69.
8
Njock MS, Guiot J, Henket MA, et al. Sputum exosomes: promising biomarkers for idiopathic pulmonary fibrosis[J]. Thorax, 2019, 74(3): 309-312.
9
Jiang F, Chen Q, Wang W, et al. Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1[J]. J Hepatol, 2020, 72(1): 156-166.
10
Ying W, Gao H, Dos Reis FCG, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice[J]. Cell Metab, 2021, 33(4): 781-790.
11
Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics[J]. Theranostics, 2020, 10(8): 3684-3707.
12
Yu X, Odenthal M, Fries JW. Exosomes as miRNA carriers: Formation-function-future[J]. Int J Mol Sci, 2016, 17(12): 2028.
13
Sun Z, Shi K, Yang S, et al. Effect of exosomal miRNA on cancer biology and clinical applications[J]. Mol Cancer, 2018, 17(1): 147.
14
Coughlan C, Bruce KD, Burgy O, et al. Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses[J]. Curr Protoc Cell Biol, 2020, 88(1): e110.
15
Shirejini SZ, Inci F. The Yin and Yang of exosome isolation methods:conventional practice, microfluidics, and commercial kits[J]. Biotechnol Adv, 2022, 54: 107814.
16
Lin S, Yu Z, Chen D, et al. Progress in microfluidics-based exosome separation and detection technologies for diagnostic applications[J]. Small, 2020, 16(9): e1903916.
17
刘 亮,肖 瑶,张 驰. miRNA检测方法的研究进展[J]. 药物分析杂志2020, 40(1): 70-82.
18
Hu T, Chitnis N, Monos D, et al. Next-generation sequencing technologies:An overview[J]. Hum Immunol, 2021, 82(11): 801-811.
19
Zheng D, Zhu Y, Zhang J, et al. Identification and evaluation of circulating small extracellular vesicle microRNAs as diagnostic biomarkers for patients with indeterminate pulmonary nodules[J]. J Nanobiotechnol, 2022, 20(1): 172.
20
Yang G, Wang T, Qu X, et al. Exosomal miR-21/Let-7a ratio distinguishes non-small cell lung cancer from benign pulmonary diseases[J]. Asia Pac J Clin Oncol, 2020, 16(4): 280-286.
21
Zhou X, Wen W, Shan X, et al. A six-microRNA panel in plasma was identified as a potential biomarker for lung adenocarcinoma diagnosis[J]. Oncotarget, 2017, 8(4): 6513-6525.
22
Jin X, Chen Y, Chen H, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing[J]. Clin Cancer Res, 2017, 23(17): 5311-5319.
23
Cazzoli R, Buttitta F, Di Nicola M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer[J]. J Thorac Oncol, 2013, 8(9): 1156-1162.
24
Zhao Z, Liu J, Wang C, et al. MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2[J]. Int J Clin Exp Pathol, 2014, 7(11): 7726-7734.
25
Shen J, Liu Z, Todd NW, et al. Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers[J]. BMC Cancer, 2011, 11: 374.
26
Li Xianfeng, Zhang Qinghua, Jin Xiayun, et al. Combining serum miRNAs, CEA, and CYFRA21-1 with imaging and clinical features to distinguish benign and malignant pulmonary nodules: a pilot study[J]. World J Surg Oncol, 2017, 15(1): 107.
27
Xing L, Su J, Guarnera MA, et al. Sputum microRNA biomarkers for identifying lung cancer in indeterminate solitary pulmonary nodules[J]. Clin Cancer Res, 2015, 21(2): 484-489.
28
Zhou P, Lu F, Wang J, et al. A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva[J]. Chem Commun (Camb), 2020, 56(63): 8968-8971.
29
范卫杰,张 冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
30
杨 丽,钱桂生. 肺结节临床精准诊断的新理念[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
31
Piao XM, Jeong P, Kim YH, et al. Urinary cell-free microRNA biomarker could discriminate bladder cancer from benign hematuria[J]. Int J Cancer, 2019, 144(2): 380-388.
32
Salahandish R, Ghaffarinejad A, Omidinia E, et al. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene[J]. Biosens Bioelectron, 2018, 120: 129-136.
[1] 陈经欣, 李梅, 陈洁雅. 肺结节胸腔镜术后肺部感染危险因素分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 238-243.
[2] 刘锦程, 王斌, 张雯, 张明周, 刘禹, 叶东樊, 黄赞胜, 邱凌霄, 卿斌, 王创业, 王南博, 王苹, 郭宇航, 周培花, 程秋霞, 徐智. 肺泡灌洗液RASSF1A及SHOX2甲基化联合径向超声特征对肺结节性质鉴别诊断的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 505-511.
[3] 孙志红, 庞红艳, 王睿. 呼出气体中VOCs联合CT征象诊断非实性肺结节的临床意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 442-445.
[4] 解良婕, 王剑, 阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 242-246.
[5] 沙敏, 瞿秋霞, 朱卫东, 陈成. 肺结核与肺结节病相关肉芽肿组织中CXCR5的差异性表达[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 189-194.
[6] 段丽君, 董鑫, 潘若楠, 任梦然, 卢晓倩, 曹殿波. 术前误诊良性肺结节与典型恶性肺结节临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 46-50.
[7] 邹明珠, 蓝博文, 林观兰, 代海洋. 螺旋CT形态学特征在肺结节良恶性诊断中的临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 729-730.
[8] 任茂玲, 孙晓容, 何晓丽. CT引导下微波消融术在肺部结节治疗中的应用及术后并发症的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 718-720.
[9] 蒋丽, 王晓慧, 李维益, 苟双芸, 丁敏, 杨丽. 创新智能健康教育与随访管理对肺结节患者焦虑的影响随机对照研究[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 485-489.
[10] 王洪武, 方碧霞. 基于人工智能探讨多发性肺结节的诊治策略[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 301-305.
[11] 李华娟, 唐英俊, 王赛妮, 徐旺, 林玲, 李羲, 黄华萍. 肺结节临床与CT影像学特征分析及良恶性预测模型构建[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 318-323.
[12] 潘玥, 夏婷, 王燕, 顾娟. 肺结节患者生活质量影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 272-274.
[13] 胥凯凯, 李铁铮, 刘春全, 崔永. 肺小结节精准定位日间手术流程及临床疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 230-232.
[14] 王宇, 张泽锴, 吴明胜, 王高祥, 孙效辉, 王君, 徐美青, 李田, 徐世斌, 解明然. 术后病理诊断为良性肺结节323例患者临床特征分析[J]. 中华胸部外科电子杂志, 2024, 11(03): 167-174.
[15] 刘云泽, 李宬润, 任红, 郭俊唐, 刘阳. CT影像组学在肺结节鉴别诊断中的价值[J]. 中华胸部外科电子杂志, 2024, 11(02): 120-129.
阅读次数
全文


摘要