切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 432 -434. doi: 10.3877/cma.j.issn.1674-6902.2023.03.038

综述

肠道菌群失调在肺动脉高压发病中的研究进展
李丹阳, 李满祥()   
  1. 710061 西安,西安交通大学第一附属医院呼吸与危重症医学科
  • 收稿日期:2022-11-08 出版日期:2023-06-25
  • 通信作者: 李满祥
  • 基金资助:
    国家自然科学基金资助项目(81970050)

Research progress of gut dysbiosis in pulmonary arterial hypertension

Danyang Li, Manxiang Li()   

  • Received:2022-11-08 Published:2023-06-25
  • Corresponding author: Manxiang Li
引用本文:

李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.

Danyang Li, Manxiang Li. Research progress of gut dysbiosis in pulmonary arterial hypertension[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 432-434.

肺动脉高压(pulmonary arterial hypertension, PAH)是指由多种病因引起的肺血管结构和功能改变,导致肺动脉压力异常升高,心排出量降低甚至右心衰竭的临床综合征[1]。第六届世界肺动脉高压学术研讨会确定PAH的血流动力学诊断标准为mPAP>20 mmHg [2]。由于我国缺乏mPAP在21~24 mmHg人群的临床数据,目前我国的PAH诊断标准仍为静息状态下,成年人在海平面水平经右心导管检查所得mPAP≥25 mmHg的血流动力学状态[3]。其病理基础主要包括肺血管收缩、肺血管重塑、原位血栓形成,几者相互作用使肺动脉管腔狭窄甚至闭塞,导致肺动脉压力持续升高[4]。近年来,肠道菌群成为PAH的研究热点,研究发现肠道菌群及其代谢物参与PAH的发生[5]。本文就肠道菌群失调与PAH的关系及其在PAH发病机制中的作用做进行阐述,为PAH的诊断和靶向治疗提供新思路。

1
任成山,卞士柱,胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 1801913.
3
中华医学会呼吸病学分会肺栓塞与肺血管病学组,中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会,全国肺栓塞与肺血管病防治协作组,等. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志 2021, 101(1): 11-51.
4
Malenfant S, Neyron AS, Paulin R, et al. Signal transduction in the development of pulmonary arterial hypertension[J]. Pulm Circ, 2013, 3(2): 278-293.
5
Thenappan T, Khoruts A, Chen Y, et al. Can intestinal microbiota and circulating microbial products contribute to pulmonary arterial hypertension[J]? Am J Physiol Heart Circ Physiol, 2019, 317(5): H1093-h1101.
6
Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Microbiol, 2011, 9(4): 279-290.
7
Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier[J]. Gut, 2016, 65(2): 330-339.
8
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
9
Cerdó T, Ruiz A, Acuña I, et al. Gut microbial functional maturation and succession during human early life[J]. Environ Microbiol, 2018, 20(6): 2160-2177.
10
Tamburini S, Shen N, Wu HC, et al. The microbiome in early life: implications for health outcomes[J]. Nat Med, 2016, 22(7): 713-722.
11
Wu P, Zhu T, Tan Z, et al. Role of gut microbiota in pulmonary arterial hypertension[J]. Front Cell Infect Microbiol, 2022, 12: 812303.
12
Hayabuchi Y. The action of smooth muscle cell potassium channels in the pathology of pulmonary arterial hypertension[J]. Pediatr Cardiol, 2017, 38(1): 1-14.
13
Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension[J]. J Am Coll Cardiol, 2004, 43(12 Suppl S): 13s-24s.
14
Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives[J]. Eur Respir J, 2019, 53 (1): 1801887.
15
Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 186(3): 261-272.
16
Rich S, Dantzker DR, Ayres SM, et al. Primary pulmonary hypertension. A national prospective study[J]. Ann Intern Med1987, 107(2): 216-223.
17
Kim S, Rigatto K, Gazzana MB, et al. Altered gut microbiome profile in patients with pulmonary arterial hypertension[J]. Hypertension, 2020, 75(4): 1063-1071.
18
Huang Y, Lin F, Tang R, et al. Gut microbial metabolite trimethylamine N-oxide aggravates pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2022, 66(4): 452-460.
19
Luo L, Chen Q, Yang L, et al. MSCs Therapy Reverse the Gut Microbiota in Hypoxia-Induced Pulmonary Hypertension Mice[J]. Front Physiol, 2021, 12: 712139.
20
Callejo M, Mondejar-Parreño G, Barreira B, et al. Pulmonary arterial hypertension affects the rat gut microbiome[J]. Sci Rep, 2018, 8(1): 9681.
21
Sanada TJ, Hosomi K, Shoji H, et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model[J]. Pulm Circ, 2020, 10(3): 2045894020929147.
22
Tamosiuniene R, Tian W, Dhillon G, et al. Regulatory T cells limit vascular endothelial injury and prevent pulmonary hypertension[J]. Circ Res, 2011, 109(8): 867-879.
23
Manfredo Vieira S, Hiltensperger M, Kumar V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380): 1156-1161.
24
Sharma RK, Oliveira AC, Yang T, et al. Gut pathology and its rescue by ACE2 (Angiotensin-Converting Enzyme 2) in hypoxia-induced pulmonary hypertension[J]. Hypertension, 2020, 76(5): 206-216.
25
Ranchoux B, Bigorgne A, Hautefort A, et al. Gut-lung connection in pulmonary arterial hypertension[J]. Am J Respir Cell Mol Biol, 2017, 56(3): 402-405.
26
Perros F, Lambrecht BN, Hammad H. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways[J]. Respir Res, 2011, 12(1): 125.
27
Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 228-233.
28
Zhan K, Gong X, Chen Y, et al. Short-chain fatty acids regulate the immune responses via G protein-coupled receptor 41 in bovine rumen epithelial cells[J]. Front Immunol, 2019, 10: 2042.
29
Soon E, Crosby A, Southwood M, et al. Bone morphogenetic protein receptor type Ⅱ deficiency and increased inflammatory cytokine production. A gateway to pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2015, 192(7): 859-872.
30
Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota[J]. Nutrients, 2021, 13(8): 2795.
31
Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health[J]. J Transl Med, 2017, 15(1): 73.
32
Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations,functions, and implications for health and disease[J]. Gastroenterology, 2014, 146(6): 1564-1572.
33
Abenavoli L, Scarpellini E, Colica C, et al. Gut microbiota and obesity: A role for probiotics[J]. Nutrients, 2019, 11(11): 2690.
34
Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease[J]. J Clin Invest, 2014, 124(10): 4204-4211.
35
Mu C, Zhu W. Antibiotic effects on gut microbiota, metabolism, and beyond[J]. Appl Microbiol Biotechnol, 2019, 103(23-24): 9277-9285.
36
Sharma RK, Oliveira AC, Yang T, et al. Pulmonary arterial hypertension-associated changes in gut pathology and microbiota[J]. ERJ Open Res, 2020, 6(3): 00253-2019.
[1] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[2] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[3] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[4] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[5] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[6] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[7] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[8] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[9] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[10] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[11] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[12] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[13] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 金泽平, 董晶, 柳云鹏, 汪阳. 菌群-肠道-脑轴与缺血性卒中危险因素关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 510-517.
阅读次数
全文


摘要