切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 435 -437. doi: 10.3877/cma.j.issn.1674-6902.2023.03.039

综述

以肺磨玻璃结节为表现的肺腺癌发生机制研究进展
郝昭昭, 李多, 南岩东()   
  1. 710038 西安,空军军医大学唐都医院呼吸与危重症医学科;710021 西安,西安医学院
    710038 西安,空军军医大学唐都医院呼吸与危重症医学科
  • 收稿日期:2022-11-17 出版日期:2023-06-25
  • 通信作者: 南岩东
  • 基金资助:
    陕西省重点研发计划(2019SF-009); 唐都医院创新发展基金(2017LCYJ016)

Research progress on the mechanism of lung adenocarcinoma with pumonary ground glass nodules

Zhaozhao Hao, Duo Li, Yandong Nan()   

  • Received:2022-11-17 Published:2023-06-25
  • Corresponding author: Yandong Nan
引用本文:

郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.

Zhaozhao Hao, Duo Li, Yandong Nan. Research progress on the mechanism of lung adenocarcinoma with pumonary ground glass nodules[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 435-437.

磨玻璃结节(ground glass nodule, GGN)是指在高分辨率计算机断层扫描(high resolution computed tomography, HRCT)上表现为病变区域不足以掩盖肺细小支气管和细小血管等结构且边缘清晰的圆形或椭圆形密度轻度增高影[1]。在影像学上,依据GGN内部含有实性成分的比例,分为纯磨玻璃结节(pure GGN, pGGN)和混合性磨玻璃结(mixture GGN, mGGN)[2,3]。在病理学上,GGN主要与非黏液型腺癌密切相关[2],经证实pGGN与非典型腺瘤增生(AAH)和原位腺癌(AIS)密切相关;mGGN与微浸润腺癌(MIA)和部分浸润性腺癌(IAC)密切相关[4,5,6,7]。在分子生物学上,以pGGN为影像表现的AAH或者AIS处于惰性生长的特殊状态[8];以mGGN为影像表现的MIA处于侵袭性增加的生长状态[9];以实性结节为影像表现的IAC处于快速进展的生长状态[10]。GGN属于肺腺癌发展的早期阶段,是从肺部组织的"持续性损伤→AAH→AIS→MIA→IAC"这一进展阶段在影像学上的表现[11]。本文就GGN的影像学表现、病理学基础及其相关分子生物学机制作一综述,旨在为肺腺癌的早期筛查、早期诊段及早期治疗提供见解。

1
刘宝东. 肺磨玻璃结节的诊治策略[J]. 中国肺癌杂志2019, 22(07): 449-456.
2
Kudo Y, Matsubayashi J, Saji H, et al. Association between high-resolution computed tomography findings and the IASLC/ATS/ERS classification of small lung adenocarcinomas in Japanese patients[J]. Lung Cancer, 2015, 90(1): 47-54.
3
Yang J, Wang H, Geng C, et al. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules[J]. Biomed Eng Online, 2018, 17(1): 20.
4
Yang YQ, Lu Z, Gao J, et al. Correlations between vessel changes and the histopathologic subtypes of lung adenocarcinoma with pure ground-glass nodule on computed tomography[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2016, 38(2): 182-186.
5
Wu XL, Xu QZ, Chen T, et al. Establishment and analysis of prediction model for invasive subsolid pulmonary nodules based on radiomics[J]. Zhonghua Yi Xue Za Zhi, 2022, 102(3): 209-215.
6
Liu Y, Sun H, Zhou F, et al. Imaging features of TSCT predict the classification of pulmonary preinvasive lesion, minimally and invasive adenocarcinoma presented as ground glass nodules[J]. Lung Cancer, 2017, 108: 192-197.
7
Qi L, Lu W, Yang L, et al. Qualitative and quantitative imaging features of pulmonary subsolid nodules: differentiating invasive adenocarcinoma from minimally invasive adenocarcinoma and preinvasive lesions[J]. J Thorac Dis, 2019, 11(11): 4835-4846.
8
Lee HW, Jin K N, Lee JK, et al. Long-term follow-up of ground-glass nodules after 5 years of stability[J]. J Thorac Oncol, 2019, 14(8): 1370-1377.
9
Shen L, Lin J, Wang B, et al. Computed tomography findings, clinicopathological features, genetic characteristics and prognosis of in situ and minimally invasive lung adenocarcinomas[J]. Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(9): 1107-1112.
10
Wang T, Zhang T, Han X, et al. Impact of the international association for the study of lung cancer/American thoracic society/European respiratory society classification of stage IA adenocarcinoma of the lung: Correlation between computed tomography images and EGFR and KRAS gene mutations[J]. Exp Ther Med, 2015, 9(6): 2095-2103.
11
Nie M, Yao K, Zhu X, et al. Evolutionary metabolic landscape from preneoplasia to invasive lung adenocarcinoma[J]. Nature Communications, 2021, 12(1): 6479.
12
Xiang W, Xing Y, Jiang S, et al. Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring </=10 mm on thin-section computed tomography[J]. Cancer Imaging, 2014, 14: 33.
13
Kitami A, Sano F, Hayashi S, et al. Correlation between histological invasiveness and the computed tomography value in pure ground-glass nodules[J]. Surg Today, 2016, 46(5): 593-598.
14
Marx A, Chan JK, Coindre JM, et al. The 2015 World Health Organization Classification of tumors of the thymus: Continuity and changes[J]. J Thorac Oncol, 2015, 10(10): 1383-1395.
15
沈 丹,江德鹏,蒋幼凡. 未吸烟人群慢性阻塞性肺疾病与肺癌危险关系的系统评价[J]. 重庆医科大学学报2016, 41(4): 360-363.
16
Selamat SA, Galler JS, Joshi AD, et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma[J]. PLoS One, 2011, 6(6): e21443.
17
Kerr KM, Galler JS, Hagen JA, et al. The role of DNA methylation in the development and progression of lung adenocarcinoma[J]. Dis Markers, 2007, 23(1-2): 5-30.
18
Selamat SA, Galler JS, Joshi AD, et al. DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma[J]. PLoS One, 2011, 6(6): e21443.
19
Lahn M, Su C, Li S, et al. Expression levels of protein kinase C-alpha in non-small-cell lung cancer[J]. Clin Lung Cancer, 2004, 6(3): 184-189.
20
Yamada G, Murata M, Takasawa A, et al. Increased expressions of claudin 4 and 7 in atypical adenomatous hyperplasia and adenocarcinoma of the lung[J]. Med Mol Morphol, 2016, 49(3): 163-169.
21
Ilie M, Long E, Hofman V, et al. Diagnostic value of immunohistochemistry for the detection of the BRAF mutation in primary lung adenocarcinoma Caucasian patients[J]. Ann Oncol, 2013, 24(3): 742-748.
22
Zhou QJ, Zheng ZC, Zhu YQ, et al. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters[J]. J Thorac Dis, 2017, 9(5): 1190-1200.
23
Sun K, Xie H, Zhao J, et al. A clinicopathological study of lung adenocarcinomas with pure ground-glass opacity >3 cm on high-resolution computed tomography[J]. Eur Radiol, 2022, 32(1): 174-183.
24
Travis WD, Brambilla E, Nicholson AG, et al. The 2015 World Health Organization Classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification[J]. J Thorac Oncol, 2015, 10(9): 1243-1260.
25
Belinsky SA, Snow SS, Nikula K J, et al. Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens[J]. Carcinogenesis, 2002, 23(2): 335-339.
26
Xu X, Li N, Zhao R, et al. Targeted next-generation sequencing for analyzing the genetic alterations in atypical adenomatous hyperplasia and adenocarcinoma in situ[J]. J Cancer Res Clin Oncol, 2017, 143(12): 2447-2453.
27
Kimura K, Matsumoto S, Harada T, et al. ARL4C is associated with initiation and progression of lung adenocarcinoma and represents a therapeutic target[J]. Cancer Sci, 2020, 111(3): 951-961.
28
Shin DH, Kim SH, Choi M, et al. Oncogenic KRAS promotes growth of lung cancer cells expressing SLC3A2-NRG1 fusion via ADAM17-mediated shedding of NRG1[J]. Oncogene, 2022, 41(2): 280-292.
29
Kim EY, Cha YJ, Lee SH, et al. Early lung carcinogenesis and tumor microenvironment observed by single-cell transcriptome analysis[J]. Transl Oncol, 2022, 15(1): 101277.
30
Lu T, Yang X, Shi Y, et al. Single-cell transcriptome atlas of lung adenocarcinoma featured with ground glass nodules[J]. Cell Discovery, 2020, 6: 69.
31
Braile M, Marcella S, Cristinziano L, et al. VEGF-A in cardiomyocytes and heart diseases[J]. Int J Mol Sci, 2020, 21(15): 5294.
32
Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy[J]. Nat Rev Cancer, 2008, 8(8): 592-603.
33
Liu Y, Sun H, Zhou F, et al. Imaging features of TSCT predict the classification of pulmonary preinvasive lesion, minimally and invasive adenocarcinoma presented as ground glass nodules[J]. Lung Cancer, 2017, 108:192-197.
34
Li G, Wu F, Yang H, et al. MiR-9-5p promotes cell growth and metastasis in non-small cell lung cancer through the repression of TGFBR2[J]. Biomed Pharmacother, 2017, 96: 1170-1178.
35
Naito M, Aokage K, Saruwatari K, et al. Microenvironmental changes in the progression from adenocarcinoma in situ to minimally invasive adenocarcinoma and invasive lepidic predominant adenocarcinoma of the lung[J]. Lung Cancer, 2016, 100: 53-62.
36
Koshikawa N, Giannelli G, Cirulli V, et al. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5[J]. J Cell Biol, 2000, 148(3): 615-624.
37
Song X, Chen Q, Wang J, et al. Clinical and prognostic implications of an immune-related risk model based on TP53 status in lung adenocarcinoma[J]. J Cell Mol Med, 2022, 26(2): 436-448.
38
Yim J, Zhu L C, Chiriboga L, et al. Histologic features are important prognostic indicators in early stages lung adenocarcinomas[J]. Mod Pathol, 2007, 20(2): 233-241.
39
Sholl LM, Yeap BY, Iafrate AJ, et al. Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers[J]. Cancer Res, 2009, 69(21): 8341-8348.
40
Soh J, Toyooka S, Ichihara S, et al. Sequential molecular changes during multistage pathogenesis of small peripheral adenocarcinomas of the lung[J]. J Thorac Oncol, 2008, 3(4): 340-347.
41
Yatabe Y, Takahashi T, Mitsudomi T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer[J]. Cancer Res, 2008, 68(7): 2106-2111.
42
戴书华,刘国芳,向东生. 肺磨玻璃结节CT值测量在早期癌症诊断中的意义[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(6): 770-771.
[1] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[2] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[3] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[4] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[5] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[6] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[7] 刘静, 徐爽, 缪亚军. 肺腺癌miR-3653表达与高危型人乳头瘤病毒感染及预后的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 600-604.
[8] 熊廷伟, 陶阳, 李王佳, 付彬洁, 褚志刚, 吕发金. 分析MPVR技术在诊断肺磨玻璃结节浸润性中的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 575-579.
[9] 潘忠军, 戎国祥, 丁明, 殷优宏, 张双龙. 非气管插管麻醉下单孔胸腔镜手术对肺结节及血流动力学、炎性指标的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 272-275.
[10] 贾乃龙, 李传资, 王绥煌, 张余鹏, 林志华, 林昌昆, 黄垂志. 低剂量能谱CT结合多平面重建技术对肺癌和肺炎性结节鉴别诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 247-251.
[11] 陆祥, 陈卫荣. 单孔胸腔镜肺段切除术与单孔胸腔镜肺楔形切除术在直径2 cm以下肺磨玻璃结节的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 95-98.
[12] 邹健, 从建华, 田玥, 黄旻坤, 孙婷, 王志勤, 沈俪骅, 高臻晖. 肺磨玻璃结节与幽门螺杆菌感染的相关性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 258-262.
[13] 郑旭, 韩燕燕, 高珊, 李翀. 基于非标记定量蛋白质组学技术分析消岩汤干预人肺腺癌细胞后蛋白表达谱特征的影响[J/OL]. 中华针灸电子杂志, 2024, 13(01): 18-23.
[14] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
[15] 申磊磊, 刘有, 宁浩勇, 云天洋, 侯小明, 郭俊唐, 梁朝阳, 刘阳. 第8版肺癌TNM分期亚实性结节T分期建议方案的验证[J/OL]. 中华胸部外科电子杂志, 2024, 11(01): 40-52.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?