切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 438 -441. doi: 10.3877/cma.j.issn.1674-6902.2023.03.040

综述

高毒力肺炎克雷伯菌分子学机制研究进展
卞天丹, 宋爽, 陶臻()   
  1. 210000 南京,南京医科大学附属南京医院南京市第一医院感染科
  • 收稿日期:2023-02-12 出版日期:2023-06-25
  • 通信作者: 陶臻

Progress in the molecular mechanisms of highly virulent Klebsiella pneumoniae

Tiandan Bian, Shuang Song, Zhen Tao()   

  • Received:2023-02-12 Published:2023-06-25
  • Corresponding author: Zhen Tao
引用本文:

卞天丹, 宋爽, 陶臻. 高毒力肺炎克雷伯菌分子学机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 438-441.

Tiandan Bian, Shuang Song, Zhen Tao. Progress in the molecular mechanisms of highly virulent Klebsiella pneumoniae[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 438-441.

肺炎克雷伯菌(Klebsiella pneumoniae, KP)是一种革兰阴性、有荚膜的细菌,属于肠杆菌科,广泛存在于周围环境中,包括土壤、地表及医疗设备等,1882年首次从死于肺炎的患者肺部分离出来[1]。它是一种常见的条件致病菌和医院感染菌,易感染有免疫缺陷或免疫低下的人群[2]。1986年首次发现了以肝脓肿合并眼内炎为主要症状,没有任何肝胆危险因素的社区获得的高毒力肺炎克雷伯菌(hypervirulent Klebsiella pneumonia, hvKP)[3]。现在hvKP的散发报道主要为亚裔人群,中国是目前hvKP感染的高发地区。hvKP菌株的出现预示着一场新的、迅速恶化的全球范围的公共卫生灾难的开始。根据致病特点和毒力大小,KP可分为2种,经典型肺炎克雷伯菌(classical Klebsiella pneumoniae, cKP)和高毒力肺炎克雷伯菌(hypervirulent Klebsiella pneumonia, hvKP)。hvKP表现为社区获得性感染,易造成健康人群发病,医院感染少见。hvKP具有高侵袭性,能向远处浸润,导致眼、肺、肝、全身软组织和中枢神经系统等多部位浸润性感染,病死率高达40%,治愈后可能有较严重的后遗症[4]。提高对hvKP的认识,深入研究hvKP分子学机制对于降低hvKP的危害具有重要意义。这些高毒力肺炎克雷伯菌在既往对抗生素非常敏感,随着毒力和耐药的重叠,菌株现正变得高度耐药,高毒性肺炎克雷伯菌的临床情况正急剧变化[5]。本文就hvKP在人体的定植与感染、入侵与转移、生存、损伤能力及近年来耐药和高毒力菌株的重叠等进行综述。

1
CF. Uber die scizomyceten bei der acuten fibrosen pneumonie.[J]. Arch Pathol Anat Physiol Klin Med, 1882, 87: 319-324.
2
Paczosa MK, Mecsas J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense[J]. Microbiol Mol Biol Rev, 2016, 80(3): 629-661.
3
Liu YC, Cheng DL, Lin CL. Klebsiella pneumoniae liver abscess associated with septic endophthalmitis[J]. Archives of Internal Medicine, 1986, 146(10): 1913-1916.
4
Decré D, Verdet C, Emirian A, et al. Emerging severe and fatal infections due to Klebsiella pneumoniae in two university hospitals in France[J]. J Clin Microbiol, 2011, 49(8): 3012-3014.
5
Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study[J]. Lancet Infect Dis, 2018, 18(1): 37-46.
6
Podschun R. Phenotypic properties of Klebsiella pneumoniae and K. oxytoca isolated from different sources[J]. Int J hygiene Environment Med, 1990, 189(6): 527.
7
Lin YT, Siu LK, Lin JC, et al. Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries[J]. BMC Microbiol, 2012, 12: 13.
8
Martin RM, Cao J, Brisse S, et al. Molecular Epidemiology of Colonizing and Infecting Isolates of Klebsiella pneumoniae[J]. mSphere, 2016, 1(5): e00261-00216.
9
Lu MC, Chen YT, Ming-Ko C, et al. Colibactin Contributes to the Hypervirulence of pks+ K1 CC23 Klebsiella pneumoniae in Mouse Meningitis Infections[J]. Front Cell Infect Microbiol, 2017, 7(Pt 1): 103.
10
Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing[J]. Sci Transl Med, 2012, 4(148): 148ra116.
11
Tsay RW, Siu LK, Fung CP, et al. Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection[J]. Arch Intern Med, 2002, 162(9): 1021-1027.
12
Murphy CN, Mortensen MS, Krogfelt KA, et al. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections[J]. Infect Immun, 2013, 81(8): 3009-3017.
13
Schroll C, Barken KB, Krogfelt KA, et al. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation[J]. BMC Microbiol, 2010, 10: 179.
14
Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed[J]. Virulence, 2013, 4(2): 107-18.
15
Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization[J]. PLoS One, 2009, 4(3): e4982.
16
Lin CL, Chen FH, Huang LY, et al. Effect in virulence of switching conserved homologous capsular polysaccharide genes from Klebsiella pneumoniae serotype K1 into K20[J]. Virulence, 2017, 8(5): 487-493.
17
Hsu CR, Pan YJ, Liu JY, et al. Klebsiella pneumoniae translocates across the intestinal epithelium via Rho GTPase- and phosphatidylinositol 3-kinase/Akt-dependent cell invasion[J]. Infect Immun, 2015, 83(2): 769-779.
18
Lee CH, Chuah SK, Tai WC, et al. Delay in Human Neutrophil Constitutive Apoptosis after Infection with Klebsiella pneumoniae Serotype K1[J]. Front Cell Infect Microbiol, 2017, 7: 87.
19
Kabha K, Nissimov L, Athamna A, et al. Relationships among capsular structure, phagocytosis, and mouse virulence in Klebsiella pneumoniae[J]. Infect Immun, 1995, 63(3): 847-852.
20
Fung CP, Chang FY, Lee SC, et al. A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis?[J]. Gut, 2002, 50(3): 420-424.
21
Wang L, Shen D, Wu H, et al. Resistance of hypervirulent Klebsiella pneumoniae to both intracellular and extracellular killing of neutrophils[J]. PLoS One, 2017, 12(3): e0173638.
22
Prokesch BC, Tekippe M, Kim J, et al. Primary osteomyelitis caused by hypervirulent Klebsiella pneumoniae[J]. Lancet Infect Dis, 2016, 16(9): e190-e195.
23
Fang CT, Chuang YP, Shun CT, et al. A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications[J]. J Exp Med, 2004, 199(5): 697-705.
24
Fung CP, Chang FY, Lin JC, et al. Immune response and pathophysiological features of Klebsiella pneumoniae liver abscesses in an animal model[J]. Lab Invest, 2011, 91(7): 1029-1039.
25
Nassif X, Fournier JM, Arondel J, et al. Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor[J]. Infect Immun, 1989, 57(2): 546-552.
26
Hsu CR, Lin TL, Chen YC, et al. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited[J]. Microbiology (Reading), 2011, 157(Pt 12): 3446-3457.
27
Lee CR, Lee JH, Park KS, et al. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms[J]. Front Cell Infect Microbiol, 2017, 7: 483.
28
Yu WL, Lee MF, Chang MC, et al. Intrapersonal mutation of rmpA and rmpA2: A reason for negative hypermucoviscosity phenotype and low virulence of rmpA-positive Klebsiella pneumoniae isolates[J]. J Glob Antimicrob Resist, 2015, 3(2): 137-141.
29
Yeh KM, Lin JC, Yin FY, et al. Revisiting the importance of virulence determinant magA and its surrounding genes in Klebsiella pneumoniae causing pyogenic liver abscesses: exact role in serotype K1 capsule formation[J]. J Infect Dis, 2010, 201(8): 1259-1267.
30
Yeh KM, Kurup A, Siu LK, et al. Capsular serotype K1 or K2, rather than magA and rmpA, is a major virulence determinant for Klebsiella pneumoniae liver abscess in Singapore and Taiwan[J]. J Clin Microbiol, 2007, 45(2): 466-471.
31
Palacios M, Miner TA, Frederick DR, et al. Identification of Two Regulators of Virulence That Are Conserved in Klebsiella pneumoniae Classical and Hypervirulent Strains[J]. mBio, 2018, 9(4): e01443-18.
32
Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity,population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health[J]. Proc Natl Acad Sci U S A, 2015, 112(27): E3574- E3581.
33
Russo TA, Olson R, Macdonald U, et al. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae[J]. Infect Immun, 2014, 82(6): 2356-2367.
34
Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition[J]. Mol Cell, 2002, 10(5): 1033-1043.
35
Palmer LD, Skaar EP. Transition Metals and Virulence in Bacteria[J]. Annu Rev Genet, 2016, 50: 67-91.
36
陈 杨,刘嘉琳,瞿洪平. 铁载体对肺炎克雷伯菌毒力增强的机制研究[J]. 中国感染与化疗杂志2016, 16(6): 804-807.
37
Tang LM, Chen ST, Hsu WC, et al. Klebsiella meningitis in Taiwan: an overview[J]. Epidemiol Infect, 1997, 119(2): 135-142.
38
Margo CE, Mames RN, Guy JR. Endogenous Klebsiella endophthalmitis. Report of two cases and review of the literature[J]. Ophthalmology, 1994, 101(7): 1298-1301.
39
Siu LK, Yeh KM, Lin JC, et al. Klebsiella pneumoniae liver abscess:a new invasive syndrome[J]. Lancet Infect Dis, 2012, 12(11): 881-887.
40
Lery LM, Frangeul L, Tomas A, et al. Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor[J]. BMC Biol, 2014, 12: 41.
41
Zhang R, Dong N, Huang Y, et al. Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract[J]. Emerg Microbes Infect, 2018, 7(1): 127.
42
Hennequin C, Robin F. Correlation between antimicrobial resistance and virulence in Klebsiella pneumoniae[J]. Eur J Clin Microbiol Infect Dis, 2016, 35(3): 333-341.
43
Wyres KL, Wick RR, Judd LM, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae[J]. PLoS Genet, 2019, 15(4): e1008114.
44
Dong N, Yang X, Zhang R, et al. Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains[J]. Emerg Microbes Infect, 2018, 7(1): 146.
45
Dong N, Lin D, Zhang R, et al. Carriage of blaKPC-2 by a virulence plasmid in hypervirulent Klebsiella pneumoniae[J]. J Antimicrob Chemother, 2018, 73(12): 3317-3321.
46
Zhang X, Ouyang J, He W, et al. Co-occurrence of Rapid Gene Gain and Loss in an Interhospital Outbreak of Carbapenem-Resistant Hypervirulent ST11-K64 Klebsiella pneumoniae[J]. Front Microbiol, 2020, 11: 579618.
47
Wang Z, Wen Z, Jiang M, et al. Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae[J]. Transbound Emerg Dis, 2022, 69(5): e2661-e2676.
48
张慧芳,王瑞兰. 高毒力肺炎克雷伯菌的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(2): 253-255.
[1] 余霓雯, 陈成, 王玉婷, 盛寅. 呼吸道分泌物培养肺炎克雷伯菌阳性患者227例分析[J]. 中华危重症医学杂志(电子版), 2021, 14(01): 41-44.
[2] 危玲, 李会, 陈奕. 孕产妇产超广谱β-内酰胺酶的肠杆菌定植/感染与母婴传播研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 517-521.
[3] 钟小晴, 廖康, 王欣, 郑勋华, 邱亚桂, 许元文, 李广然, 张涤华, 黄锋先, 阳晓. 门诊就诊女性尿路感染患者的尿液病原菌种类及其耐药率分析[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 185-191.
[4] 杭文璐, 杜永亮, 李占结, 李海泉, 赵杰, 张煜. 免疫功能缺陷患者碳青霉烯类耐药肺炎克雷伯菌院内感染一例[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 205-209.
[5] 贾志芳, 尚培中, 郭伟林, 李艳艳, 宋创业. 肺炎克雷伯杆菌性肝脓肿并发内源性眼内炎三例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(03): 351-353.
[6] 胡皓翀, 刘一霆, 郭嘉瑜, 邹寄林, 陈忠宝, 周江桥, 邱涛. 肾移植术后耐碳青霉烯类肺炎克雷伯菌感染的诊疗分析[J]. 中华移植杂志(电子版), 2023, 17(04): 246-249.
[7] 李文磊, 武聚山, 贾哲, 潘娜, 吴文悦, 段斌炜, 栗光明. 肝移植术后耐碳青霉烯肺炎克雷伯菌感染危险因素分析[J]. 中华移植杂志(电子版), 2021, 15(06): 347-352.
[8] 张红梅, 胡明冬, 李沿沿, 成天媛, 徐静. 侵袭性肺炎克雷伯菌肝脓肿综合征6例临床分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 522-524.
[9] 林文科, 钟佳芳, 陈如寿. 肺炎克雷伯菌致ICU患者呼吸机相关性肺炎预后的意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 225-227.
[10] 张慧芳, 王瑞兰. 高毒力肺炎克雷伯菌的研究进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 253-255.
[11] 蒋辛, 潘纯, 黄文辉, 甘桂芬. 西宁地区某三甲医院ICU 耐碳青霉烯类肠杆菌主动筛查与感染的单中心研究[J]. 中华重症医学电子杂志, 2023, 09(02): 178-184.
[12] 孙禾, 何春凤, 吴晓东, 韩蕙泽, 施毅, 李强. 头孢他啶-阿维巴坦治疗碳青霉烯耐药的肺炎克雷伯菌脓毒性休克的临床分析[J]. 中华重症医学电子杂志, 2021, 07(01): 76-80.
[13] 李静静, 翟蕾, 赵海平, 郑波. 多囊肾合并囊肿的多重耐药菌感染一例并文献复习[J]. 中华临床医师杂志(电子版), 2023, 17(08): 920-923.
[14] 苏维奇, 罗玮, 由晓颜. 肺炎克雷伯菌的表型特征及耐药性分析[J]. 中华临床医师杂志(电子版), 2020, 14(09): 669-673.
[15] 梁慧玲, 韩超, 郑琳颖, 黄桢, 高东华. 翘芩清肺剂对肺炎克雷伯菌和金黄色葡萄球菌的抑菌效果初探[J]. 中华临床实验室管理电子杂志, 2022, 10(01): 13-16.
阅读次数
全文


摘要