1 |
王洪武,金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
|
2 |
Mamdani H, Matosevic S, Khalid AB, et al. Immunotherapy in lung cancer: Current landscape and future directions[J]. Front Immunol, 2022, 13: 823618.
|
3 |
Higgins KA, Puri S, Gray JE. Systemic and radiation therapy approaches for locally advanced non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(6): 576-585.
|
4 |
Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions[J]. Mol Cancer, 2022, 21(1): 28.
|
5 |
Zhou C, Chen G, Huang Y, et al. Camrelizumab plus carboplatin and pemetrexed versus chemotherapy alone in chemotherapy-naive patients with advanced non-squamous non-small-cell lung cancer (CameL): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet Respir Med, 2021, 9(3): 305-314.
|
6 |
Erdogu V, Çtak N, Sezen CB, et al. Comparison of 6th, 7th, and 8th editions of the TNM staging in non-small cell lung cancer patients: Validation of the 8th edition of TNM staging[J]. Turk Gogus Kalp Damar Cerrahisi Derg, 2022, 30(3): 395-403.
|
7 |
Manitz J, D′Angelo SP, Apolo AB, et al. Comparison of tumor assessments using RECIST 1.1 and irRECIST, and association with overall survival[J]. J Immunother Cancer, 2022, 10(2): e003302.
|
8 |
Young J, Badgery-Parker T, Dobbins T, et al. Comparison of ECOG/WHO performance status and ASA score as a measure of functional status[J]. J Pain Symptom Manage, 2015, 49(2): 258-264.
|
9 |
Freites-Martinez A, Santana N, Arias-Santiago S, et al. Using the common terminology criteria for adverse events (CTCAE - Version 5.0) to evaluate the severity of adverse events of anticancer therapies. CTCAE versión 5.0. Evaluación de la gravedad de los eventos adversos dermatológicos de las terapias antineoplásicas[J]. Actas Dermosifiliogr (Engl Ed), 2021, 112(1): 90-92.
|
10 |
Klement JD, Redd PS, Lu C, et al. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment[J]. Cancer Cell, 2023, 41(3): 620-636.
|
11 |
Lu C, Paschall AV, Shi H,et al. The MLL1-H3K4me3 Axis-Mediated PD-L1 Expression and Pancreatic Cancer Immune Evasion[J]. J Natl Cancer Inst, 2017, 109(6): djw283.
|
12 |
Homma S, Hayashi K, Yoshida K, et al. Nafamostat mesilate, a serine protease inhibitor, suppresses interferon-gamma-induced up-regulation of programmed cell death ligand 1 in human cancer cells[J]. Int Immunopharmacol, 2018, 54: 39-45.
|
13 |
Chen X, Gao A, Zhang F, et al. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation[J]. Theranostics, 2021, 11(7): 3392-3416.
|
14 |
Hofmeyer KA, Jeon H, Zang X. The PD-1/PD-L1 (B7-H1) pathway in chronic infection-induced cytotoxic T lymphocyte exhaustion[J]. J Biomed Biotechnol, 2011, 2011: 451694.
|
15 |
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 2020, 10(3): 727-742.
|
16 |
Lenouvel D, González-Moles MÁ,Talbaoui A, et al. An update of knowledge on PD-L1 in head and neck cancers: Physiologic, prognostic and therapeutic perspectives[J]. Oral Dis, 2020, 26(3): 511-526.
|
17 |
Salmaninejad A, Valilou SF, Shabgah AG, et al. PD-1/PD-L1 pathway:Basic biology and role in cancer immunotherapy[J]. J Cell Physiol, 2019, 234(10): 16824-16837.
|
18 |
Zhang L, Zhang M, Xu J, et al. The role of the programmed cell death protein-1/programmed death-ligand 1 pathway, regulatory T cells and T helper 17 cells in tumor immunity: a narrative review[J]. Ann Transl Med, 2020, 8(22): 1526.
|
19 |
Hsu PC, Yang CT, Jablons DM, et al. The role of yes-associated protein (YAP) in regulating programmed death-ligand 1 (PD-L1) in thoracic cancer[J]. Biomedicines, 2018, 6(4): 114.
|
20 |
Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure)[J]. Ann Oncol, 2016, 27(8): 1492-1504.
|
21 |
Yu H, Chen P, Cai X, et al. Efficacy and safety of PD-L1 inhibitors versus PD-1 inhibitors in first-line treatment with chemotherapy for extensive-stage small-cell lung cancer[J]. Cancer Immunol Immunother, 2022, 71(3): 637-644.
|
22 |
Guzik K, Tomala M, Muszak D, et al. Development of the inhibitors that target the PD-1/PD-L1 interaction-A brief look at progress on small molecules, peptides and macrocycles[J]. Molecules, 2019, 24(11): 2071.
|
23 |
罗详冲,李高峰. PD-1抑制剂卡瑞利珠单抗在晚期恶性肿瘤中的应用进展[J]. 解放军医学杂志,2020, 45(6): 672-679.
|
24 |
邹 琴,龙 玲,叶 容,等. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(2): 278-280.
|
25 |
Fu J, Wang F, Dong LH, et al. Preclinical evaluation of the efficacy,pharmacokinetics and immunogenicity of JS-001, a programmed cell death protein-1 (PD-1) monoclonal antibody[J]. Acta Pharmacol Sin, 2017, 38(5): 710-718.
|
26 |
Li F, Li J, Yin K, Zhang J, et al. CS1003, a novel human and mouse cross-reactive PD-1 monoclonal antibody for cancer therapy[J]. Acta Pharmacol Sin, 2021, 42(1): 142-148.
|
27 |
Hutchins B, Starling GC, McCoy MA, et al. Biophysical and Immunological Characterization and In Vivo Pharmacokinetics and Toxicology in Nonhuman Primates of the Anti-PD-1 Antibody Pembrolizumab[J]. Mol Cancer Ther, 2020, 19(6): 1298-1307.
|
28 |
Gjetting T, Gad M, Fröhlich C, et al. Sym021, a promising anti-PD1 clinical candidate antibody derived from a new chicken antibody discovery platform[J]. Mabs, 2019, 11(4): 666-680.
|
29 |
Ok CY, Young KH. Targeting the programmed death-1 pathway in lymphoid neoplasms[J]. Cancer Treat Rev, 2017, 54: 99-109.
|
30 |
Zak KM, Grudnik P, Magiera K, et al. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2[J]. Structure, 2017, 25(8): 1163-1174.
|