1 |
任成山,卞士柱,胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
|
2 |
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 10.1183/13993003.01913-2018
|
3 |
Liang S, Desai AA, Black SM, et al. Cytokines, chemokines, and inflammation in pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2021, 1303: 275-303.
|
4 |
Cassady SJ, Ramani GV. Right heart failure in pulmonary hypertension[J]. Cardiol Clin, 2020, 38(2): 243-255.
|
5 |
Luna-Lopez R, Ruiz Martin A, Escribano Subias P. Pulmonary arterial hypertension[J]. Med Clin (Barc), 2022, 158(12): 622-629.
|
6 |
Alhosaini K, Azhar A, Alonazi A, et al. GPCRs: The most promiscuous druggable receptor of the mankind[J]. Saudi Pharm J, 2021, 29(6): 539-551.
|
7 |
Nieto Gutierrez A, Mcdonald PH. GPCRs: Emerging anti-cancer drug targets[J]. Cell Signal, 2018, 41: 65-74.
|
8 |
Yu H, Rimbert A, Palmer AE, et al. GPR146 deficiency protects against hypercholesterolemia and atherosclerosis[J]. Cell, 2019, 179(6): 1276-1288.
|
9 |
Jiang H, Niu Y, He Y, et al. Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p-JNK MAPK pathway[J]. J Cell Physiol, 2022, 237(3): 1948-1963.
|
10 |
Meephat S, Prasatthong P, Potue P, et al. Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-kappaB expression in hypertensive rats[J]. Antioxidants (Basel), 2021, 10(9): 10.3390/antiox10091487
|
11 |
Penumatsa KC, Toksoz D, Warburton RR, et al. Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(5): L752-L762.
|
12 |
Jiang Y, Huang J, Xia Y, et al. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells[J]. Eur J Pharmacol, 2023, 941: 175502.
|
13 |
Nayak K, Razak A, Megha A, et al. Impact of right ventricular function on left ventricular torsion and ventricular deformations in pulmonary artery hypertension patients[J]. Cardiovasc Hematol Disord Drug Targets, 2021, 21(1): 78-86.
|
14 |
Pan J, Lei L, Zhao C, et al. Clinical characteristics and survival of patients with three major connective tissue diseases associated with pulmonary hypertension: A study from China[J]. Exp Ther Med, 2021, 22(3): 925.
|
15 |
Tello K, Seeger W, Naeije R, et al. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment[J]. Br J Pharmacol, 2021, 178(1): 90-107.
|
16 |
Weiss A, Boehm M, Egemnazarov B, et al. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction[J]. Br J Pharmacol, 2021, 178(1): 31-53.
|
17 |
Hu Y, Chi L, Kuebler WM, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9(11): 10.3390/cells9112338
|
18 |
Chen B, Calvert AE, Cui H, et al. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1151-1519.
|
19 |
Lyle MA, Davis JP, Brozovich FV. Regulation of pulmonary vascular smooth muscle contractility in pulmonary arterial hypertension: Implications for therapy[J]. Front Physiol, 2017, 8: 614.
|
20 |
Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension[J]. Cell Rep, 2014, 6(5): 809-817.
|
21 |
Gorr MW, Sriram K, Muthusamy A, et al. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension[J]. Br J Pharmacol, 2020, 177(15): 3505-3518.
|
22 |
Lindfors L, Sundstrom L, Froderberg Roth L, et al. Is GPR146 really the receptor for proinsulin C-peptide?[J]. Bioorg Med Chem Lett, 2020, 30(13): 127208.
|
23 |
Wilkins BP, Finch AM, Wang Y, et al. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?[J]. Trends Endocrinol Metab, 2022, 33(7): 481-492.
|
24 |
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling[J]. Curr Genet, 2018, 64(1): 103-108.
|
25 |
Li G, Qi W, Li X, et al. Recent advances in c-Jun N-terminal kinase (JNK) inhibitors[J]. Curr Med Chem, 2021, 28(3): 607-627.
|
26 |
Pua LJW, Mai CW, Chung FF, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma[J]. Int J Mol Sci, 2022, 23(3): 10.3390/ijms23031108
|
27 |
Duan X, Li J, Cui J, et al. Chemical component and in vitro protective effects of Matricaria chamomilla(L.) against lipopolysaccharide insult[J]. J Ethnopharmacol, 2022, 296: 115471.
|
28 |
Miyagawa K, Shi M, Chen PI, et al. Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-Mediated metabolic and epigenetic changes[J]. Circ Res, 2019, 124(2): 211-224.
|