切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (04) : 460 -465. doi: 10.3877/cma.j.issn.1674-6902.2023.04.002

论著

GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响
黄杰, 夏瑜, 姜艳娇, 刘云()   
  1. 222061 连云港,徐州医科大学附属连云港医院药学部
    222061 连云港,徐州医科大学附属连云港医院呼吸内科
  • 收稿日期:2023-03-05 出版日期:2023-08-25
  • 通信作者: 刘云
  • 基金资助:
    国家自然科学基金资助项目(31871155)

Effects of GPR146 on vascular remodeling in mice with pulmonary hypertension via P-JNK pathway

Jie Huang, Yu Xia, Yanjiao Jiang, Yun Liu()   

  1. Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, China
    Respiratory Medicine, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222061, China
  • Received:2023-03-05 Published:2023-08-25
  • Corresponding author: Yun Liu
引用本文:

黄杰, 夏瑜, 姜艳娇, 刘云. GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 460-465.

Jie Huang, Yu Xia, Yanjiao Jiang, Yun Liu. Effects of GPR146 on vascular remodeling in mice with pulmonary hypertension via P-JNK pathway[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(04): 460-465.

目的

分析G蛋白偶联受体146(orphan G protein-coupled receptor 146, GPR146)经磷酸化氨基末端蛋白激酶(phosphorylated c-Jun N-terminal kinase, P-JNK)通路对肺动脉高压(pulmonary hypertension, PH)肺血管重构(pulmonary vascular remodeling, PVR)致肺血管压力升高的影响。

方法

构建PH模型,采用SD大鼠10只,分为对照组和SuHx组,每组5只;采用小鼠20只,分为Control组、SuHx组、SuHx+SiNC组、SuHx+SiGPR146组,共4组。测量每组右心室收缩压(right ventricular systolic pressure, RVSP)和右心室肥厚指数(right ventricular hypertrophy index, RVHI)。免疫荧光(immunofluorescence, IFC)染色观察GPR146表达,免疫印迹检测GPR146、P-JNK与增殖细胞抗原(proliferating cell nuclear antigen, PCNA)表达。

结果

与Control组相比,SuHx组大鼠肺组织GPR146升高(P<0.05,t=4.742)。GPR146主要在α-actin染色血管中膜层平滑肌细胞表达;SuHx组小鼠肺组织GPR146升高,SuHx+SiGPR146组GPR146比SuHx+SiNC组低(P<0.05,F=8.576)。SuHx组小鼠肺组织P-JNK与PCNA升高,干扰GPR146后P-JNK与PCNA表达降低(P<0.05,F=6.048,25.55);SuHx组小鼠RVSP和RVHI高于Control组,干扰GPR146后SuHx+SiGPR146组小鼠RVSP和RVHI低于SuHx+SiNC组;SuHx组小鼠肺血管壁厚度比Control组厚;敲除GPR146后,SuHx+siGPR146组小鼠肺血管壁厚度小于SuHx+siNC组(P<0.05,F=4.106);HYP+SiGPR146组PASMCs中GPR146下调(P<0.05,F=6.907),与SiNC组相比,HYP+SiNC组PASMCs中P-JNK与PCNA表达上调,敲除GPR146后HYP+SiGPR146组中P-JNK与PCNA蛋白相较于HYP+SiNC组下调(P<0.05,F=7.436,33.68)。

结论

GPR146经P-JNK通路促进肺动脉平滑肌细胞(PASMCs)增殖,加剧PH进展,可为预防和治疗PH可行靶点。

Objective

To investigate the effect of G protein-coupled receptor 146 (GPR146) on pulmonary vascular pressure elevation induced by pulmonary vascular remodeling(PVR) in pulmonary hypertension (PH) via phosphorylated c-Jun N-terminal kinase(P-JNK) pathway.

Methods

Ten SD rats were used to establish PH models and were divided into control group and SuHx group, with 5 rats in each group. Twenty mice were divided into Control group, SuHx group, SuHx+ SiNC group and SuHx+ SiGPR146 group. Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) were measured. The expression of GPR146 was detected by immunofluorescence (IFC) staining, and the expressions of GPR146, P-JNK and proliferating cell nuclear antigen (PCNA) were detected by Western Blot.

Results

Compared with Control group, GPR146 in lung tissue of SuHx group was increased(P<0.05, t=4.742). GPR146 was mainly expressed in α-actin stained vascular mesenchyme smooth muscle cells. GPR146 in SuHx group was increased, and GPR146 in SuHx+ SiGPR146 group was lower than SuHx+ SiNC group (P<0.05, F=8.576). The expression of P-JNK and PCNA in lung tissue of SuHx group was increased, and the expression of P-JNK and PCNA was decreased after interference with GPR146(P<0.05, F=6.048, 25.55); The RVSP and RVHI of SuHx group were higher than those of Control group, and the RVSP and RVHI of SuHx+ SiGPR146 group were lower than those of SuHx+ SiNC group after interference with GPR146. The pulmonary vascular wall thickness in SuHx group was thicker than that in Control group. After GPR146 was knocked out, the pulmonary vascular wall thickness in SuHx+ siGPR146 group was lower than that in SuHx+ siNC group(P<0.05, F=4.106); GPR146 in PASMCs of HYP+ SiGPR146 group was down-regulated (P<0.05, F=6.907). Compared with SiNC group, P-JNK and PCNA expressions in PASMCs of HYP+ SiNC group were up-regulated. After GPR146 knockout, P-JNK and PCNA proteins in HYP+ SiGPR146 group were down-regulated compared with those in HYP+ SiNC group(P<0.05, F=7.436, 33.68).

Conclusion

GPR146 promotes the proliferation of pulmonary artery smooth muscle cells (PASMCs) through the P-JNK pathway and aggravates the progression of PH, which can be a feasible target for the prevention and treatment of PH.

图1 PH大鼠肺组织中GPR146蛋白表达。注:每组小鼠肺组织匀浆Western Blot实验。Control:对照组;SuHx:缺氧+Sugen5416组,n=3, **P<0.01
图2 PH大鼠肺组织免疫荧光结果。注:Control:对照组;SuHx:缺氧+Sugen5416组。比例尺=100 μm
图3 GPR146缺乏对小鼠肺组织P-JNK和PCNA的影响。注:各组小鼠肺组织匀浆Western Blot实验。Control:对照组;SuHx:缺氧+Sugen5416组;SuHx+siNC:缺氧+Sugen5416+阴性对照组;SuHx+siGPR146:缺氧+Sugen5416+GPR146基因敲除组。n=4,*P<0.05,**P<0.01,***P<0.001
图4 GPR146缺乏对PH小鼠RVSP和RVHI的影响。注:Control:对照组;SuHx:缺氧+Sugen5416组;SuHx+siNC:缺氧+Sugen5416+阴性对照组;SuHx+siGPR146:缺氧+Sugen5416+GPR146基因敲除组。n=3,*P<0.05,**P<0.01,***P<0.001
图5 GPR146缺乏对PH小鼠肺血管重塑的影响(HE染色)。注:Control:对照组;SuHx:缺氧+Sugen5416组;SuHx+siNC:缺氧+Sugen5416+阴性对照组;SuHx+siGPR146:缺氧+Sugen5416+GPR146基因敲除组。比例尺=50 μm。n=3,*P<0.05
图6 GPR146对PASMCs中P-JNK和PCNA的影响。注:各组PASMCs Western Blot实验。SiNC:常氧+阴性对照;Hyp+siNC:缺氧+阴性对照;Hyp+siGPR146:缺氧+GPR146基因敲除。n=3,*P<0.05,**P<0.01,***P<0.001
图7 GPR146过表达对PASMCs中P-JNK的影响。注:各组PASMCs Western Blot实验。pcDNA:pcDNA3.1(+)载体;pcDNA-GPR146:GPR146过表达质粒。n=3,*P<0.05,**P<0.01
1
任成山,卞士柱,胡明冬. 肺动脉高压的成因及治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(1): 1-5.
2
Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J]. Eur Respir J, 2019, 53(1): 10.1183/13993003.01913-2018
3
Liang S, Desai AA, Black SM, et al. Cytokines, chemokines, and inflammation in pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2021, 1303: 275-303.
4
Cassady SJ, Ramani GV. Right heart failure in pulmonary hypertension[J]. Cardiol Clin, 2020, 38(2): 243-255.
5
Luna-Lopez R, Ruiz Martin A, Escribano Subias P. Pulmonary arterial hypertension[J]. Med Clin (Barc), 2022, 158(12): 622-629.
6
Alhosaini K, Azhar A, Alonazi A, et al. GPCRs: The most promiscuous druggable receptor of the mankind[J]. Saudi Pharm J, 2021, 29(6): 539-551.
7
Nieto Gutierrez A, Mcdonald PH. GPCRs: Emerging anti-cancer drug targets[J]. Cell Signal, 2018, 41: 65-74.
8
Yu H, Rimbert A, Palmer AE, et al. GPR146 deficiency protects against hypercholesterolemia and atherosclerosis[J]. Cell, 2019, 179(6): 1276-1288.
9
Jiang H, Niu Y, He Y, et al. Proteomic analysis reveals that Xbp1s promotes hypoxic pulmonary hypertension through the p-JNK MAPK pathway[J]. J Cell Physiol, 2022, 237(3): 1948-1963.
10
Meephat S, Prasatthong P, Potue P, et al. Diosmetin ameliorates vascular dysfunction and remodeling by modulation of Nrf2/HO-1 and p-JNK/p-NF-kappaB expression in hypertensive rats[J]. Antioxidants (Basel), 2021, 10(9): 10.3390/antiox10091487
11
Penumatsa KC, Toksoz D, Warburton RR, et al. Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 313(5): L752-L762.
12
Jiang Y, Huang J, Xia Y, et al. Hypoxia activates GPR146 which participates in pulmonary vascular remodeling by promoting pyroptosis of pulmonary artery endothelial cells[J]. Eur J Pharmacol, 2023, 941: 175502.
13
Nayak K, Razak A, Megha A, et al. Impact of right ventricular function on left ventricular torsion and ventricular deformations in pulmonary artery hypertension patients[J]. Cardiovasc Hematol Disord Drug Targets, 2021, 21(1): 78-86.
14
Pan J, Lei L, Zhao C, et al. Clinical characteristics and survival of patients with three major connective tissue diseases associated with pulmonary hypertension: A study from China[J]. Exp Ther Med, 2021, 22(3): 925.
15
Tello K, Seeger W, Naeije R, et al. Right heart failure in pulmonary hypertension: Diagnosis and new perspectives on vascular and direct right ventricular treatment[J]. Br J Pharmacol, 2021, 178(1): 90-107.
16
Weiss A, Boehm M, Egemnazarov B, et al. Kinases as potential targets for treatment of pulmonary hypertension and right ventricular dysfunction[J]. Br J Pharmacol, 2021, 178(1): 31-53.
17
Hu Y, Chi L, Kuebler WM, et al. Perivascular inflammation in pulmonary arterial hypertension[J]. Cells, 2020, 9(11): 10.3390/cells9112338
18
Chen B, Calvert AE, Cui H, et al. Hypoxia promotes human pulmonary artery smooth muscle cell proliferation through induction of arginase[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1151-1519.
19
Lyle MA, Davis JP, Brozovich FV. Regulation of pulmonary vascular smooth muscle contractility in pulmonary arterial hypertension: Implications for therapy[J]. Front Physiol, 2017, 8: 614.
20
Sheikh AQ, Lighthouse JK, Greif DM. Recapitulation of developing artery muscularization in pulmonary hypertension[J]. Cell Rep, 2014, 6(5): 809-817.
21
Gorr MW, Sriram K, Muthusamy A, et al. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension[J]. Br J Pharmacol, 2020, 177(15): 3505-3518.
22
Lindfors L, Sundstrom L, Froderberg Roth L, et al. Is GPR146 really the receptor for proinsulin C-peptide?[J]. Bioorg Med Chem Lett, 2020, 30(13): 127208.
23
Wilkins BP, Finch AM, Wang Y, et al. Orphan GPR146: an alternative therapeutic pathway to achieve cholesterol homeostasis?[J]. Trends Endocrinol Metab, 2022, 33(7): 481-492.
24
Satoh R, Hagihara K, Sugiura R. Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling[J]. Curr Genet, 2018, 64(1): 103-108.
25
Li G, Qi W, Li X, et al. Recent advances in c-Jun N-terminal kinase (JNK) inhibitors[J]. Curr Med Chem, 2021, 28(3): 607-627.
26
Pua LJW, Mai CW, Chung FF, et al. Functional roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma[J]. Int J Mol Sci, 2022, 23(3): 10.3390/ijms23031108
27
Duan X, Li J, Cui J, et al. Chemical component and in vitro protective effects of Matricaria chamomilla(L.) against lipopolysaccharide insult[J]. J Ethnopharmacol, 2022, 296: 115471.
28
Miyagawa K, Shi M, Chen PI, et al. Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-Mediated metabolic and epigenetic changes[J]. Circ Res, 2019, 124(2): 211-224.
[1] 褚海波, 边小维, 徐永波, 王涛, 郭文君. 高血流动力对大隐静脉和脾静脉血管重塑的影响[J]. 中华普通外科学文献(电子版), 2011, 05(02): 100-103.
[2] 褚海波, 王国华, 王涛, 徐永波, 郭文君. 大隐静脉曲张管壁肥大细胞浸润分布与定量研究[J]. 中华普通外科学文献(电子版), 2010, 04(02): 114-116.
[3] 任成山, 卞士柱, 胡明冬. 肺动脉高压的成因及治疗新理念[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 1-5.
[4] 谭玉萍, 王朝晖, 姚萍, 梁爱武, 杨益宝, 潘玲, 张鹏飞, 黎展华. 银杏叶提取物对慢性阻塞性肺疾病大鼠气道及肺血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2017, 10(06): 662-667.
[5] 张莉, 刘彧, 王宇石, 黄毅, 雷达, 郑杨, 张存泰, 王明屹. 炎症信号在血管衰老中的作用机制[J]. 中华老年病研究电子杂志, 2016, 03(03): 28-32.
阅读次数
全文


摘要