切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (02) : 213 -219. doi: 10.3877/cma.j.issn.1674-6902.2025.02.002

论著

Ⅰ期非小细胞肺癌经气腔播散的临床、病理及双能量CT 参数与预测模型构建
徐俊洁1, 罗虎1, 陶锡鹏1, 谢李词1, 周向东1,()   
  1. 1. 400038 重庆,陆军(第三)军医大学第一附属医院呼吸与危重症医学科
  • 收稿日期:2025-01-13 出版日期:2025-04-25
  • 通信作者: 周向东
  • 基金资助:
    重庆市适宜技术推广项目(No.2025jstg015)

Comparative analysis and predictive modeling of clinical,pathologic,and dual-energy CT parameters for tumor spread through air spaces in stage I non-small cell lung cancer

Junjie Xu1, Hu Luo1, Xipeng Tao1, Lici Xie1, Xiangdong Zhou1,()   

  1. 1. Department of Respiratory and Critical Care Medicine,First Affiliated Hospital of Army Medical University,Chongqing 400038,China
  • Received:2025-01-13 Published:2025-04-25
  • Corresponding author: Xiangdong Zhou
引用本文:

徐俊洁, 罗虎, 陶锡鹏, 谢李词, 周向东. Ⅰ期非小细胞肺癌经气腔播散的临床、病理及双能量CT 参数与预测模型构建[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 213-219.

Junjie Xu, Hu Luo, Xipeng Tao, Lici Xie, Xiangdong Zhou. Comparative analysis and predictive modeling of clinical,pathologic,and dual-energy CT parameters for tumor spread through air spaces in stage I non-small cell lung cancer[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(02): 213-219.

目的

比较Ⅰ期非小细胞肺癌(non small cell lung cancer,NSCLC)通过气腔播散(spread through air spaces,STAS)术前临床、病理特征与双能量CT(dual-energy CT,DECT)影像学参数,构建预测STAS 的列线图模型。

方法

纳入2016 年1 月至2024 年9 月经术后病理确诊的Ⅰ期NSCLC 患者269 例为对象,其中STAS 阳性100 例、阴性169 例。 收集两组NSCLC 患者的临床资料、术前DECT 影像学资料、病理参数进行统计分析。 采用LASSO-logistic 回归筛选预测因子并构建列线图模型。 通过受试者工作特征(receiver operating characteristic,ROC)曲线的曲线下面积(area under curve,AUC)、校准图、临床决策曲线(decision curve Analysis,DCA)与临床影响曲线(clinical impact curve,CIC)分析模型的性能。 选取年龄、性别、吸烟史、糖尿病、高血压、肿瘤位置和TNM 分期为协变量进行1∶1 倾向性得分匹配(propensity score matching,PSM),共匹配出STAS 阳性86 例、阴性86 例进行STAS 与术后病理特征分析。

结果

单因素分析显示阳性与阴性者吸烟史、肺气肿、胸膜牵拉征、毛刺征、结节性质、实性成分占比(consolidation-to-tumour ratio,CTR)、RECIST 直径、小结节体积、碘比值及平均CT 值有统计学差异(P<0.05)。 经多因素分析表明肺气肿背景、毛刺征、CTR、碘比值及CT 值是Ⅰ期NSCLC 患者STAS 阳性预测因子。 预测模型结果显示ROC 曲线AUC 为0.800(95%CI:0.744~0.854),准确度=75.1%,灵敏度=78%,特异性=73.4%,阳性预测值=63.4%,阴性预测值=84.9%,F1 评分=0.699。 使用R 软件所构建的Nomogram 列线图将预测模型可视化,建立的校正曲线与理想曲线有重合度,CIC 与DCA 曲线展现出临床应用价值。 PSM 术后病理结果分析显示STAS 与高侵袭性病理特征相关,容易有血管浸润(7.0% vs.0.0%,P=0.029)和脉管内癌栓(11.6% vs. 1.2%,P=0.013),有高的Ki-67 水平和IASLC 分级(P<0.05)。

结论

以术前DECT 影像学中的肺气肿背景、毛刺征、CTR、碘比值及平均CT 值为基础构建的Ⅰ期NSCLC 患者的临床预测模型具有诊断预测意义,结合三维成像特征应用于临床Ⅰ期NSCLC 的STAS 术前评估;STAS 与血流丰富和高侵袭性病理特征相关。

Objective

To compare the preoperative clinical and pathological characteristics of stage I non-small cell lung cancer (NSCLC) with spread through air spaces (STAS) using dual-energy CT (DECT)imaging parameters and construct a nomogram model for predicting STAS.

Methods

A total of 269 patients with pathologically confirmed stage I NSCLC from January 2016 to September 2024 were enrolled,including 100 STAS-positive and 169 STAS-negative cases. Clinical data,preoperative DECT imaging parameters,and pathological features were analyzed. LASSO-logistic regression was used to screen predictors and develop the nomogram. Model performance was evaluated via receiver operating characteristic (ROC) curve analysis (area under the curve,AUC),calibration plots,decision curve analysis (DCA),and clinical impact curve (CIC).Propensity score matching (PSM,1∶1) adjusted for age,sex,smoking history,diabetes,hypertension,tumor location,and TNM stage yielded 86 STAS-positive and 86 STAS-negative cases for postoperative pathological analysis.

Results

Univariate analysis revealed significant differences in smoking history,emphysema,pleural retraction,spiculation,nodule type,consolidation-to-tumor ratio (CTR),RECIST diameter,small nodule volume,iodine ratio,and mean CT value between STAS-positive and-negative groups (P<0.05). Multivariate analysis identified emphysema background,spiculation,CTR,iodine ratio,and CT value as independent predictors of STAS. The nomogram model achieved an AUC of 0.800 (95%CI: 0.744 ~0.854),accuracy=75.1%,sensitivity=78%,specificity=73.4%,positive predictive value=63.4%,negative predictive value=84.9%,and F1-score=0.699. Calibration curves showed good agreement with ideal predictions,while DCA and CIC demonstrated clinical utility. Post-PSM analysis indicated that STAS correlated with aggressive pathological features,including vascular invasion (7.0% vs. 0.0%,P=0.029),intravascular tumor thrombus (11.6% vs.1.2%,P=0.013),elevated Ki-67 levels,and higher IASLC grading (P<0.05).

Conclusion

The clinical prediction model based on preoperative DECT parameters (emphysema background,spiculation,CTR,iodine ratio,and mean CT value) provides diagnostic value for preoperative STAS assessment in stage I NSCLC when combined with three-dimensional imaging features. STAS is associated with abundant blood flow and highly invasive pathological characteristics.

表1 STAS 阳性和阴性患者的DECT 参数特征
图1 STAS 的Nomogram 模型。 整合纳入以下临床及影像学预测因子:肺气肿背景、毛刺征象、CTR、平均CT 值和碘比值
表2 STAS 相关的LASSO-Logistic 回归分析结果
图2 预测模型校准曲线、DCA 与CIC 曲线。 图A 为校准曲线,内部验证队列中模型预测概率与实际观测概率具有一致性;图B 为DCA 曲线;图C 为CIC 曲线分析,红色曲线显示模型在不同阈值概率下判定的高风险个体数量;绿色曲线则显示各阈值对应的真实阳性病例数
表3 临床Ⅰ期非小细胞肺癌切除后病理参数比较
1
Sung H,Ferlay J,Siegel RL ,et al. Global Cancer Statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021,71(3):209-249.
2
Kadota K,Nitadori JI,Sima CS,et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage i lung adenocarcinomas[J]. J Thorac Oncol,2015,10(5): 806-814.
3
Toyokawa G,Yamada Y,Tagawa T,et al. Significance of spread through air spaces in resected pathological stage i lung adenocarcinoma[J]. Ann Thorac Surg,2018,105(6):1655-1663.
4
Shiono S,Yanagawa N. Spread through air spaces is a predictive factor of recurrence and a prognostic factor in stage I lung adenocarcinoma[J]. Interact Cardiovasc Thorac Surg,2016,23(4): 567-572.
5
Warth A. Spread through air spaces(STAS):a comprehensive update[J]. Transl Lung Cancer Res,2017,6(5): 501-507.
6
Shih AR,Mino-Kenudson M. Updates on spread through air spaces(STAS) in lung cancer[J]. Histopathology,2020,77(2): 173-180.
7
Zhang RY,Zheng H,Lin J,et al. Review of the application of dual-energy CT combined with radiomics in the diagnosis and analysis of lung cancer[J]. J Appl Clin Med Phys,2025,26(4):e70020.
8
Sasaki T,Oda S,Kuno H,et al. Potential of spectral imaging generated by contrast-enhanced dual-energy CT for lung cancer histopathological classification-A preliminary study[J]. Eur J Radiol Open,2025,14: 100628.
9
Zheng XX,Tian HZ,Li W,et al. The diagnosis value of dual-energy computed tomography (DECT) multi-parameter imaging in lung adenocarcinoma and squamous cell carcinoma[J]. BMC Pulm Med,2024,24(1): 545.
10
Asamura H,Nishimura KK,Giroux DJ,et al.IASLC lung cancer staging project: the new database to inform revisions in the ninth edition of the TNM classification of lung cancer[J]. J Thorac Oncol,2023,18(5): 564-575.
11
Moreira AL,Ocampo PSS,Xia YH,et al. A grading system for invasive pulmonary adenocarcinoma: a proposal from the international association for the study of lung cancer pathology committee[J]. J Thorac Oncol,2020,15(10): 1599-1610.
12
Kadota K,Kushida Y,Katsuki N,et al. Tumor spread through air spaces is an independent predictor of recurrence-free survival in patients with resected lung squamous cell carcinoma[J]. Am J Surg Pathol,2017,41(8): 1077-1086.
13
Lu SH,Tan KS,Kadota K,et al. Spread through air spaces (STAS)is an independent predictor of recurrence and lung cancer-specific death in squamous cell carcinoma[J]. J Thorac Oncol,2017,12(2): 223-234.
14
Aly RG,Rekhtman N,Li XY,et al. Spread through air spaces( STAS ) is prognostic in atypical carcinoid,large cell neuroendocrine carcinoma,and small cell carcinoma of the lung[J].J Thorac Oncol,2019,14(9): 1583-1593.
15
Ma Y,Zhang YY,Li HR,et al. Spread through air spaces is a common phenomenon of pulmonary metastasized tumours regardless of origins[J]. Eur J Cardiothorac Surg,2022,61(6): 1242-1248.
16
Huang L,Petersen RH.Tumour spread through air spaces is a determiner for treatment of clinical stage I non-small cell lung Cancer:Thoracoscopic segmentectomy vs lobectomy [J]. Lung Cancer,2025,201: 108438.
17
Toki MI ,Harrington K,Syrigo KN. The role of spread through air spaces (STAS) in lung adenocarcinoma prognosis and therapeutic decision making[J]. Lung Cancer,2020,146: 127-133.
18
Han YB,Kim H,Mino-Kenudson M,et al. Tumor spread through air spaces (STAS): prognostic significance of grading in non-small cell lung cancer[J]. Mod Pathol,2021,34(3): 549-561.
19
Liu YW,Lai WA,Hung JY,et al. Spread through air spaces may predict early progression after salvage surgery for EGFR-mutant advanced lung adenocarcinoma treated with targeted therapy[J].World J Surg Oncol,2025,23(1): 65.
20
Walts AE,Marchevsky AM. Current evidence does not warrant frozen section evaluation for the presence of tumor spread through alveolar spaces[J]. Arch Pathol Lab Med,2018,142(1): 59-63.
21
Eguchi Takashi,Kameda K,Lu SH,et al. Lobectomy is associated with better outcomes than sublobar resection in spread through air spaces (STAS)-positive T1 lung adenocarcinoma: a propensity score-matched analysis[J]. J Thorac Oncol,2019,14(1): 87-98.
22
Villalba JA,Shih AR,Sayo TMS,et al. Accuracy and reproducibility of intraoperative assessment on tumor spread through air spaces in stage 1 lung adenocarcinomas[J]. J Thorac Oncol,2021,16(4):619-629.
23
Liu C,Meng A,Xue XQ,et al.Prediction of early lung adenocarcinoma spread through air spaces by machine learning radiomics: a crosscenter cohort study[J]. Transl Lung Cancer Res,2024,13(12):3443-3459.
24
Bassi M,Russomando A,Vannucci J,et al. Role of radiomics in predicting lung cancer spread through air spaces in a heterogeneous dataset[J]. Transl Lung Cancer Res,2022,11(4): 560-571.
25
Nishimori M,Iwasa H,Miyatake K,et al. 18F FDG-PET/CT analysis of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma[J]. Ann Nucl Med,2022,36(10): 897-903.
26
Travis WD,Asamura H,Bankier AA,et al. The IASLC lung cancer staging project: proposals for coding t categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol,2016,11(8): 1204-1223.
27
Wang Y,Lyu D,Cheng C,et al. Preoperative nomogram for predicting spread through air spaces in clinical-stage IA non-small cell lung cancer using (18)F-fluorodeoxyglucose positron emission tomography/computed tomography[J]. J Cancer Res Clin Oncol,2024,150(4): 185.
28
Upadhyay P,Wu CW,Pham A,et al. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD)[J]. J Toxicol Environ Health B Crit Rev,2023,26(5): 275-305.
29
白 莹,马 娟,吕 欣,等. 慢性阻塞性肺疾病合并肺癌临床特征分析[J/CD]. 中华肺部疾病杂志(电子版),2021,14(3):265-271.
30
Zhao GX,Li XL,Lei SY,et al. Prevalence of lung cancer in chronic obstructive pulmonary disease: A systematic review and meta-analysis[J]. Front Oncol,2022,12: 947981.
31
Qi C,Sun SW,Xiong XZ. From COPD to lung cancer: mechanisms linking,diagnosis,treatment,and prognosis [J]. Int J Chron Obstruct Pulmon Dis,2022,17: 2603-2621.
32
Ge F,Feng Y,Huo ZY,et al. Inhaled corticosteroids and risk of lung cancer among chronic obstructive pulmonary disease patients: a comprehensive analysis of nine prospective cohorts[J]. Transl Lung Cancer Res,2021,10(3): 1266-1276.
33
Qiu X,Chen DL,Liu YY,et al. Relationship between stromal cells and tumor spread through air spaces in lung adenocarcinoma[J].Thorac Cancer,2019,10(2): 256-267.
34
Yoshida C,Kadota K,Ikeda T,et al. Tumor-associated macrophage infiltration is associated with a higher rate of tumor spread through air spaces in resected lung adenocarcinomas[J]. Lung Cancer,2021,158: 91-96.
35
Cha MJ,Lee HY,Lee KS,et al. Micropapillary and solid subtypes of invasive lung adenocarcinoma:clinical predictors of histopathology and outcome[J]. J Thorac Cardiovasc Surg,2014,147(3): 921-928.e2.
36
Tao JL,Liang CY,Yin K,et al. 3D convolutional neural network model from contrast-enhanced CT to predict spread through air spaces in non-small cell lung cancer[J]. Diagn Interv Imaging,2022,103(11): 535-544.
37
de Margerie-Mellon C,Onken A,Heidinger BH,et al.CT manifestations of tumor spread through airspaces in pulmonary adenocarcinomas presenting as subsolid nodules[J]. J Thorac Imaging,2018,33(6): 402-408.
38
Qi L,Xue K,Cai YJ,et al. Predictors of CT morphologic features to identify spread through air spaces preoperatively in small-sized lung adenocarcinoma[J]. Front Oncol,2020,10: 548430.
[1] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[2] 张洋, 刘志燕, 王先美, 孙燕, 曾钰. ICU 患者失禁相关性皮炎风险预测模型的系统评价[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(01): 31-37.
[3] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[4] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[5] 张志昱, 张凡, 周奇, 欧阳骏, 林宇鑫, 张学锋. 术前炎性指标对肾透明细胞癌WHO/ISUP病理分级的预测价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 323-328.
[6] 乔宇, 李涛, 桑纯利, 董鑫. 奥希替尼联合TP 化疗方案对非小细胞肺癌的疗效及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 149-152.
[7] 张佳彦, 李菲, 李梓盟, 付丽娜, 陈旭如. 非小细胞肺癌患者门诊靶向药物治疗依从性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 153-156.
[8] 郑乾, 徐炎, 熊延路, 刘阳, 马永富. 亚肺段精准切除与肺叶切除在IA1 ~IA2 期肺腺癌中的疗效比较[J/OL]. 中华腔镜外科杂志(电子版), 2025, 18(01): 32-37.
[9] 李鑫, 李乐, 陈金明, 刘蕊. 基于Meta 分析构建肝癌微血管侵犯的术前预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 74-80.
[10] 张泽延, 段止璇, 吴惠群, 王国栋, 凌华, 杜晓霞. 亚急性期脑卒中患者心肺适能预测模型的构建及验证[J/OL]. 中华脑科疾病与康复杂志(电子版), 2025, 15(01): 15-20.
[11] 任船, 葛荣忠, 邱正才, 朱莉. 肠癌患者术后代谢性酸中毒的预测模型构建及应用价值评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 34-39.
[12] 洪凡, 王志坚. 瘢痕子宫再妊娠并发症预测模型的研究进展[J/OL]. 中华产科急救电子杂志, 2025, 14(01): 20-25.
[13] 闫玉, 张建新, 李宏伟, 卫元, 丁燕子, 付梦宇, 张雪薇, 阚玫麟, 袁恩武. 基于机器学习法构建子痫前期患者不良妊娠结局的临床预测模型[J/OL]. 中华临床实验室管理电子杂志, 2025, 13(01): 17-26.
[14] 赵丹文, 刘丹丹, 李文登, 孔冉冉, 刘士源. 术后辅助化疗对R0 切除T2bN0M0 非小细胞肺癌患者预后的影响[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 12-23.
[15] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
阅读次数
全文


摘要