切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 679 -684. doi: 10.3877/cma.j.issn.1674-6902.2025.05.003

论著

PALM3对铜绿假单胞菌致血管内皮细胞损伤作用的机制研究
吴秀琳1, 郭亮2, 蔡俊3, 何志强4, 王悦4, 杨天仪4, 唐敏4, 李明霞5, 杨智勇6, 易斌6, 熊玮1, 廖江荣7,(), 吴学玲8,()   
  1. 1400038 重庆,陆军(第三)军医大学第一附属医院老年医学与特勤医学科
    2400037 重庆,陆军(第三)军医大学大学第二附属医院呼吸及危重症医学科
    3400061 重庆,武警重庆总队医院检验科
    4400042 重庆,重庆医科大学检验医学院临床检验系
    5400038 重庆,陆军(第三)军医大学第一附属医院干细胞与再生医学科
    6400038 重庆,陆军(第三)军医大学第一附属医院麻醉科
    7563099 贵州,贵州航天医院呼吸及危重症医学科
    8201112 上海,上海交通大学医学院附属仁济医院呼吸科
  • 收稿日期:2025-06-23 出版日期:2025-10-25
  • 通信作者: 廖江荣, 吴学玲
  • 基金资助:
    重庆市自然科学基金(cstc2019jcyj-msxmX0746); 遵义市呼吸疾病快速精准诊断创新人才团队

Study on the mechanism of PALM3 expression on human umbilical vein endothelial cells induced by Pseudomonas aeruginosa

Xiulin Wu1, Liang Guo2, Jun Cai3, Zhiqiang He4, Yue Wang4, Tianyi Yang4, Min Tang4, Mingxia Li5, Zhiyong Yang6, Bin Yi6, Wei Xiong1, Jiangrong Liao7,(), Xueling Wu8,()   

  1. 1Department of Geriatrics and Special Services, the First Affiliated Hospital of Army Medical University, Chongqing 400038, China
    2Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
    3Laboratory Department of Chongqing Armed Police Corps Hospital, Chongqing 400061, China
    4Department of Clinical Laboratory Science, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400042, China
    5Department of Stem Cell and Regenerative Medicine, the First Affiliated Hospital of Army Medical University, Chongqing 400038, China
    6Department of Anesthesiology, the First Affiliated Hospital of Army Medical University, Chongqing 400038, China
    7Department of Respiratory and Critical Care Medicine, Guizhou Aerospace Hospital, Chongqing 563099, China
    8Department of Respiratory Medicine, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongqing 201112, China
  • Received:2025-06-23 Published:2025-10-25
  • Corresponding author: Jiangrong Liao, Xueling Wu
引用本文:

吴秀琳, 郭亮, 蔡俊, 何志强, 王悦, 杨天仪, 唐敏, 李明霞, 杨智勇, 易斌, 熊玮, 廖江荣, 吴学玲. PALM3对铜绿假单胞菌致血管内皮细胞损伤作用的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 679-684.

Xiulin Wu, Liang Guo, Jun Cai, Zhiqiang He, Yue Wang, Tianyi Yang, Min Tang, Mingxia Li, Zhiyong Yang, Bin Yi, Wei Xiong, Jiangrong Liao, Xueling Wu. Study on the mechanism of PALM3 expression on human umbilical vein endothelial cells induced by Pseudomonas aeruginosa[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(05): 679-684.

目的

探讨PALM3对铜绿假单胞菌(Pseudomonas aeruginosa, PA)致血管内皮细胞损伤的作用机制。

方法

将人脐血静脉血管内皮细胞(human umbilical vein endothelial cells, HUVEC)随机分为Control组、Control+PA组、siRNA-Control+PA组、siRNA-PALM3+PA组。Control组为HUVEC细胞+生理盐水,Control+PA组HUVEC细胞暴露于荧光标记5×108 CFU/ml PA菌液,siRNA-Control+PA组、siRNA-PALM3+PA组分别使用siRNA-Control、siRNA-PALM3质粒转染细胞,转染48 h后加入PA;检测细胞上清液中血管内皮纤维连接蛋白(fibronectin)、血管内皮生长因子C(vascular endothelial growth factor C, VEGF-C)、血管生成素-2(angiopoietin-2, ANGPT2);检测细胞中PALM3、核因子NF-κB表达,采用MTT比较细胞生存率,通过流氏细胞术分析细胞凋亡。

结果

与Control组相比,Control+PA组和siRNA-Control+PA组细胞中PALM3蛋白表达升高(P<0.05);与Control+PA组和siRNA-Control+PA组相比,siRNA-PALM3+PA组细胞中PALM3蛋白表达量降低,NF-κB蛋白表达量降低;siRNA-PALM3+PA组纤维连接蛋白(235.7±17.5)、VEGF-C(0.72±0.05)、ANGPT2(807.8±24.6)高于Control+PA组纤维连接蛋白(109.9±5.8)、VEGF-C (0.49±0.06)、ANGPT2(464.16±26.27)和siRNA-Control+PA组纤维连接蛋白(188.9±8.6)、VEGF-C(0.49±0.02)、ANGPT2(510.57±27.6)(P<0.05); siRNA-PALM3+PA组细胞存活率(1.102±0.125),较Control+PA组(0.870 ± 0.052)和siRNA-Control+PA(0.887±0.054)增高(P<0.05);Control+PA组和siRNA-Control+PA组6 h后细胞存活率分别为(2.760±0.744)、(2.777±0.604),较Control组(1.662±0.150)增高,与Control+PA组和siRNA-Control+PA组比较,siRNA-PALM3+PA组细胞存活率(3.195±1.342)升高。

结论

下调PALM3对铜绿假单胞菌致肺血管内皮细胞损伤炎症反应有保护作用,与血管通透性呈负相关。

Objective

To explore the mechanism of PALM3 on vascular endothelial cell injury induced by Pseudomonas aeruginosa (PA).

Methods

Human umbilical vein endothelial cells (HUVEC) were randomly divided into the control group, the control+ PA group, the siRNA-control+ PA group, and the siRNA-PALM3+ PA group. Control group: HUVEC cells + normal saline; Control+ PA group: HUVEC cells exposed to fluorescently labeled 5×108 CFU/ml PA bacterial solution .The siRNA-Control+ PA group and the siRNA-PALM3+ PA group transfected cells with siRNA-Control and siRNA-PALM3 plasmids respectively, and PA was added 48 hours after transfection. It was detected that vascular endothelial fibronectin, vascular endothelial growth factor c (VEGF-C), and angiopoietin-2 (ANGPT2) in the cell supernatant; The expressions of PALM3 and nuclear factor NF-κB in cells were detected. The cell survival rate was compared by MTT, and cell apoptosis was analyzed by flow cytometry.

Result

Compared with the Control group, the expression of PALM3 protein in the cells of the Control+ PA group and the siRNA-Control+ PA group increased (P<0.05); Compared with the Control+ PA group and the siRNA-Control+ PA group, the expression level of PALM3 protein in the cells of the siRNA-PALM3+ PA group decreased, and the expression level of NF-κB protein decreased. The fibronectin (235.7±17.5), VEGF-C(0.72±0.05), and ANGPT2 (807.8±24.6) in the siRNA-PALM3+ PA group were higher than those in the Control+ PA group (109.9±5.8) and VEGF-C(0.49±0.06), ANGPT2 (464.16±26.27), and fibronectin (188.9±8.6), VEGF-C (0.49±0.02), ANGPT2 (510.57±27.6) in the siRNA-Control+ PA group (P<0.05); The cell survival rate of the siRNA-PALM3+ PA group (1.102±0.125) was higher than that of the Control+ PA group (0.870±0.052) and the siRNA-Control+ PA group (0.887±0.054) (P<0.05); The cell survival rates of the Control+ PA group and the siRNA-Control+ PA group after 6 hours were (2.760 ± 0.744) and (2.777 ± 0.604), respectively, which were higher than that of the Control group (1.662±0.150). Compared with the Control+ PA group and the siRNA-Control+ PA group, the cell survival rate in the siRNA-PALM3+ PA group (3.195±1.342) increased.

Conclusion

Down-regulation of PALM3 has a protective effect on the inflammatory response of pulmonary vascular endothelial cell injury caused by Pseudomonas aeruginosa, and is negatively correlated with vascular permeability.

图1 Western biot检测血管内皮细胞中PALM3表达注:Control+PA组为铜绿假单胞菌组;SiRNA-Control+PA组为铜绿假单胞菌+腺病毒转染阴性对照组;SiRNA-PALM3+PA组为铜绿假单胞菌+PALM3腺病毒转染组;β-action为β-肌动蛋白
表1 每组HUVEC血管内皮细胞通透性指标比较(±s)
图2 Western biot检测血管内皮细胞中NF-κB蛋白表达注:Control+PA组为铜绿假单胞菌组;SiRNA-Control+PA组为铜绿假单胞菌+腺病毒转染阴性对照组;SiRNA-PALM3+PA组为铜绿假单胞菌+PALM3腺病毒转染组;β-action为β-肌动蛋白;NF-κB为核因子κB
图3 流氏细胞术检测血管内皮细胞凋亡图注:Annexin V-FITC单阳细胞(第四象限)为早期凋亡细胞,Annexin V-FITC和PI双阳细胞(第二象限)为坏死或晚期凋亡细胞,PI单阳细胞为裸核细胞
1
马李杰,李王平,金发光,等. 急性肺损伤/急性呼吸窘迫综合征发病机制的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2013, 6(1): 65-68.
2
张鹏,史慢慢,马辉,等. 急性呼吸窘迫综合征患者机械通气动脉血二氧化碳分压变异率与预后风险相关性[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(2): 226-230.
3
Fatma Yıldırım, Írem Karaman, Akın Kaya. Current situation in ARDS in the light of recent studies: Classification, epidemiology and pharmacotherapeutics[J]. Tuberk Toraks, 2021, 69(4): 535-546.
4
Huang X, Xiu H, Zhang S, et al. The role of macrophages in the pathogenesis of ALI/ARDS[J]. Mediators Inflamm, 2018, 2018: 1264913.
5
ZhouJ, Peng Z, Wang J. Trelagliptin alleviates lipopolysaccharide (LPS)-induced inflammation and oxidative stress in acute lung injury mice[J]. Inflammation, 2021, 44(4): 1507-1517.
6
Huikang Xu, Shiying Sheng, Weiwei Luo, et al. Acute respiratory distress syndrome heterogeneity and the septic ARDS subgroup[J]. Front Immunol, 2023, 14: 1277161.
7
Cao J, Liu M, Feng S, et al. Glaucocalyxin A alleviates lipo-polysaccharide-induced inflammation and apoptosis in pulmo-nary microvascular endothelial cells and permeability injury by inhibiting STAT3 signaling[J]. Exp Ther Med, 2022, 23(4): 313.
8
Matthay MA, Zemans RL, Zimmerman GA, et al. Acute respiratory distress syndrome[J]. Nat Rev Dis Primers, 2019, 5(1): 18.
9
Máca J, Jor O, Holub M, et al. Past and present ARDS mortality rates: a systematic review[J]. Respir Care, 2017, 62(1): 113-22.
10
Haute GV, Luft C, Antunes GL, et al. Anti-inflammatory effect of octyl gallate in alveolar macrophages cells and mice with acute lung injury[J]. J Cell Physiol, 2020, 235(9): 6073-6084.
11
Wei Wang, Shengtian Mu, Dongli Yan, et al. Comprehending toll-like receptors: pivotal element in the pathogenesis of sepsis and its complications[J]. Front Immunol, 2025, 16: 1591011.
12
Hellmann J, Tang Y, Zhang MJ, et al. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation[J]. Prostaglandins Other Lipid Mediat, 2015, 116-117: 49-56.
13
Wang Z, Xu D, Ding HF, et al. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model[J]. Oncogene, 2015, 34(38): 4975-4984.
14
Pu H, Wang X, Su L, et al. Heroin activates ATF3 and CytC via c-Jun N-terminal kinase pathways to mediate neuronal apoptosis[J]. Med Sci Monit Basic Res, 2015, 21: 53-62.
15
Zhang C, Wu X, Zhao Y, et al. SIGIRR inhibits toll-like receptor 4,5,9-mediated immune responses in human air-way epithelial cells[J]. Mol Biol Rep, 2011, 38(1): 601-609.
16
Bodaszewska-Lubas M, Liao Y, Zegar A, et al. Dominant-negative form of SIGIRR: SIGIRRΔE8 promotes tumor growth through regulation of metabolic pathways[J]. J Interferon Cytokine Res, 2022, 42(9): 482-492.
17
Chen X, Zhao Y, Wu X, et al. Enhanced expression of sin-gle immunoglobulin IL-1 recepter-related molecule amel-iorates Lipopolysaccharide-induced acute lung injury in mice[J]. Shock, 2011, 35(2): 198-204.
18
陈旭昕,孟激光,韩志海,等. 干扰paralemmin-3表达抑制脂多糖诱导的肺泡上皮细胞的炎性反应[J]. 西部医学2015, 27(7): 964-966, 970.
19
Li S, Guo L, Zhao Y, et al. Silencing of Paralemmin-3 Protects Mice from lipopolysaccharide-induced acute lung injury[J]. Peptides, 2016, 76: 65-72.
20
Chen X, Wu X, Zhao Y, et al. A novel binding protein of sin-gle imnmnoglobulin IL-1 receptor-related nmlecule: Paralenmfin -3[J]. Biochem Biophys Res Commun, 2011, 404(4): 1029-1033.
21
Mougeot JC, Beckman MF, Hovan AJ, et al. Identification of single nucleotide polymorphisms (SNPs) associated with chronic graft-versus-host disease in patients undergoing allogeneic hematopoietic cell transplantation[J]. Support Care Cancer, 2023, 31(10): 587.
22
陈旭昕,孟激光,刘振千,等. 下调Paralemmin-3表达对脂多糖诱导的肺泡上皮细胞核转录因子-κB活性的影响[J]. 广东医学2014, 35(19): 2969-2971.
23
Chen X, Tang L, Feng J, et al. Downregulation of paralemmin-3 ameliorates Lipopolysaccharide-induced acute lung injury in rats by regulating inflammatory response and inhibiting forma-tion of TLR4/MyD88 and TLR4 /TRIF complexes[J]. Inflammation, 2017, 40(6): 1983-1999.
24
Chen XX, Tang L, Fu YM, et al. Paralemmin-3 contributes to lipopolysaccharide-induced inflammatory response and is involved in lipopolysaccharide-Toll-like receptor-4 signaling in alveolar macrophages[J]. Int J Mol Med, 2017, 40(6): 1921-1931.
25
陈旭昕,孟激光,马白鸽,等. 姜黄素对脂多糖诱导的巨噬细胞炎症与氧化应激的影响及机制[J]. 广东医学2018, 39(18): 2713-2717.
26
Cornish JA, Kloc M, Decker GL, et al. Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during xenopus development[J]. Dev Biol, 1992, 150: 108-120.
27
Xu S, Pan X, Mao L, et al. Phospho-Tyr705 of STAT3 is a therapeutic target for sepsis through regulating inflammation and coagulation[J]. Cell Commun Signal, 2020, 18(1): 104.
28
Yunfeng Zhao, Xiulin Wu, Lanlan Qian, et al. Activating transcription factor 3 protects mice against pseudomonas aeruginosa-induced acute lung injury by interacting with lipopolysaccharide binding protein[J]. Mol Immunol, 2017, 90: 27-32.
29
Xuxin Chen, Lu Tang, Jian Feng, et al. Downregulation of paralemmin-3 ameliorates lipopolysaccharide-induced acute lung injury in rats by regulating inflammatory response and inhibiting formation of TLR4/MyD88 and TLR4/TRIF complexes[J]. Inflammation, 2017, 40(6): 1983-1999.
30
Zhaosheng Jin, Ka Chun Suen, Daqing Ma. Perioperative "remote" acute lung injury: recent update[J]. J Biomed Res, 2017, 31(2): 197-212.
31
Singer Mervyn, Deutschman Clifford S, Seymour Christopher Warren, et al. The third International consensus definitions for sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810.
32
Di A, Mehta D, Malik AB. ROS-activated calcium signaling mechanisms regulating endothelial barrier function[J].Cell Calcium, 2016, 60(3): 2071-2075.
[1] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[2] 沈拓, 朱峰. 异质性耐药在烧伤非发酵革兰氏阴性杆菌感染中的意义[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 75-80.
[3] 贾艳慧, 原毅轩, 官浩, 胡大海. 清除衰老细胞在减轻脓毒症小鼠急性肺损伤中的作用机制探讨[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 55-60.
[4] 刘伟, 安杰, 智亮辉, 陈金辉. 阿帕替尼联合新辅助化疗对局部晚期结肠癌的临床疗效研究[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 199-203.
[5] 赵才林, 向青, 钱航, 施雯, 邱凌霄, 王斌. 基于生物信息学解析急性肺损伤/急性呼吸窘迫综合征铁死亡枢纽基因及其与免疫分型的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 503-509.
[6] 谭宜, 许新才, 万秋风, 曹博威, 李春兴, 郭杨超. 麦冬皂苷D对急性肺损伤和肠黏膜屏障损伤的保护作用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 527-533.
[7] 杨春, 游洋伟, 周宇, 林泽超, 刘亮, 袁堃. 白细胞介素-10 调节辅助性T 细胞17/调节性T 细胞对小鼠输血相关急性肺损伤的作用研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 355-361.
[8] 王鹏森, 吴慧锋, 温建芳, 韦阳, 董龙浩, 刘博强, 李占, 石春锋, 雷晓栋, 吴雄雄. 脓毒症并发急性肺损伤血清miR-146a 的表达及与预后相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 241-245.
[9] 宗晓龙, 林源希, 张天翼, 刘雅茹, 李端阳, 李真玉. 紫檀芪通过抑制炎症反应和NETs 形成对减轻脓毒症小鼠急性肺损伤的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 29-35.
[10] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[11] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[12] 王蕊, 林先萍, 李盼盼. 铜绿假单胞菌感染肺炎菌血症危险因素及耐药性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 478-480.
[13] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[14] 刘皖, 赵婷婷, 魏明辉. 铜绿假单胞菌注射液术区注射治疗颈淋巴结清扫术后顽固性高流量乳糜漏二例及文献复习[J/OL]. 中华临床医师杂志(电子版), 2024, 18(10): 926-930.
[15] 杨珂, 程梓荷, 王胜昱. 多组学技术在急性肺损伤中应用的研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(03): 159-164.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?