切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (06) : 929 -935. doi: 10.3877/cma.j.issn.1674-6902.2025.06.013

论著

基于计算机断层扫描形态学和放射组学特征预测实性肺结节恶性程度的临床意义
韩炜1, 张炜1, 郭建峰2, 高秀秀1, 李静1, 崔涛涛1,()   
  1. 1716000 延安,延安大学附属医院CT诊断科
    2716000 延安,延安大学附属医院胸外科
  • 收稿日期:2025-02-13 出版日期:2025-12-25
  • 通信作者: 崔涛涛
  • 基金资助:
    陕西省重点研发计划项目(2021SF-254)

Clinical significance of morphological and radiomics feature models based on computed tomography in predicting the malignancy degree of solid pulmonary nodules

Wei Han1, Wei Zhang1, Jianfeng Guo2, Xiuxiu Gao1, Jing Li1, Taotao Cui1,()   

  1. 1CT Diagnostic Department, Yan′an University Affiliated Hospital, Yan′an, Shaanxi 716000, China
    2Department of Thoracic Surgery, Affiliated Hospital of Yan′an University, Yan′an, Shaanxi 716000, China
  • Received:2025-02-13 Published:2025-12-25
  • Corresponding author: Taotao Cui
引用本文:

韩炜, 张炜, 郭建峰, 高秀秀, 李静, 崔涛涛. 基于计算机断层扫描形态学和放射组学特征预测实性肺结节恶性程度的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(06): 929-935.

Wei Han, Wei Zhang, Jianfeng Guo, Xiuxiu Gao, Jing Li, Taotao Cui. Clinical significance of morphological and radiomics feature models based on computed tomography in predicting the malignancy degree of solid pulmonary nodules[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(06): 929-935.

目的

探讨计算机断层扫描(computed tomography, CT)形态学和放射组学特征鉴别亚厘米实性肺结节(sub-centimeter solid pulmonary nodules, SSPNs)良恶性的临床意义。

方法

选择2021年1月至2023年3月我院收治的SSPNs患者203例(病灶最大直径≤8.0 mm)为对象。根据7︰3随机分为训练集143例和测试集60例。基线胸部低剂量CT判断SSPNs临床和形态特征,提取全肺放射学特征。采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)分析放射学特征和计算放射学特征评分,构建机器学习模型。通过受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under curve, AUC)、Hosmer-Lemeshow检验和决策曲线分析模型性能。

结果

203例SSPNs中恶性结节检出98例(48.28%)。训练集和测试集中良恶性结节直径、血管集束征、结节-肺界面、毛刺征、胸膜凹陷、空泡征、空气支气管征差异有统计学意义(P<0.05)。多因素Logistic回归分析显示,结节直径、结节-肺界面、毛刺征、胸膜凹陷征、空气支气管征与SSPNs恶性风险相关(P<0.05),5个CT特征建立形态学特征模型共提取1 783个高通量放射组学特征。相关性分析、Mann-Whitney U检验及LASSO筛选4个放射组学特征(wavelet-HLL_gldm_DependenceNonUniformity、squareroot_ngtdm_Strength、gradient_glcm_Imc1、original_glrlm_LongRunLowGrayLevelEmphasis)建立模型。基于Delong检验,联合模型在训练集和测试集中AUC高于形态学特征模型(Z=4.618、2.534,P<0.05)和放射组学模型(Z=2.449、1.982,P<0.05)。H-L拟合优度检验训练集和测试集中联合模型(χ2=3.899、2.815,P=0.866、0.945)拟合良好。决策曲线分析显示,高风险阈值0.02~0.98,联合模型较单一模型净收益大。

结论

CT形态学和放射组学特征联合模型在SSPNs良恶性鉴别中诊断性能良好,可为手术高危队列恶性SSPNs临床诊断辅助工具。

Objective

To explore the clinical application value of morphological and radiomics feature models based on computed tomography (CT) in the differentiation of benign and malignant sub-centimeter solid pulmonary nodules (SSPNs).

Methods

A retrospective analysis was conducted on the CT image data of 203 SSPNs patients from January 2021 to March 2023. They were randomly divided into the training set 143 cases and the test set 60 cases in a ratio of 7︰3. Baseline low-dose chest CT evaluated the clinical and morphological features of SSPNs, while extracting radiological features of the entire lung. The Least Absolute Shrinkage and Selection Operator (LASSO) is used for radiological feature selection and calculating radiological feature scores, and constructing machine learning models. In the test set, the performance of the model is evaluated through the area under the curve (AUC) of receiver operating characteristic(ROC), Hosmer-Lemeshow test, and decision curve.

Results

The detection rate of malignant nodules was 48.28% (98/203). In both the training set and the test set, there were significant differences between the benign group and the malignant group in terms of nodule diameter, vascular convergence sign, nodule-lung interface, spiculation sign, pleural indentation, vacuole sign, and air bronchogram sign (P<0.05). Multivariate Logistic regression analysis showed that nodule diameter, nodule-lung interface, spiculation sign, pleural indentation, and air bronchogram sign were significantly associated with the malignant risk of SSPNs (P<0.05). Morphological feature models were established using these five CT features. A total of 1, 783 high-throughput radiomics features were extracted. After correlation analysis, Mann-Whitney U test, and LASSO contraction, four of the most significant radiomics features were finally screened to establish the model(wavelet-HLL_gldm_DependenceNonUniformity, squareroot_ngtdm_Strength, gradient_glcm_Imc1, original_glrlm_LongRunLowGrayLeve). Based on the Delong test, the AUC of the combined model in both the training set and the test set was significantly higher than that of the morphological feature model (Z=4.618, 2.534, P<0.05) and the radiomics model (Z=2.449, 1.982, P<0.05). After the H-L goodness-of-fit test, the combined model in the training set and the test set (χ2=3.899, 2.815, P<0.05) fitted well. Decision curve analysis shows that when the high-risk threshold is between 0.02 and 0.98, the joint model offers greater net benefits than the single model.

Conclusion

The combined model of CT morphology and radiomics features has good diagnostic performance in differentiating benign and malignant SSPNs and is expected to become an important auxiliary tool for the clinical diagnosis of malignant SSPNs in high-risk surgical cohorts.

表1 两组SSPNs患者临床资料结果比较
临床资料 训练集(n=143) 测试集(n=60)
良性(n=74) 恶性(n=69) χ2/t P 良性(n=31) 恶性(n=29) χ2/t P
吸烟史[n(%)] 19(25.68) 25(36.23) 1.868 0.172 9(29.03) 7(24.14) 0.184 0.668
粉尘暴露史[n(%)] 1(1.35) 1(1.45) 1(3.23) 0(0.0) 1.000
肺癌家族史[n(%)] 3(4.05) 1(1.45) 0.191 0.663 2(6.45) 0(0.0) 0.492
SSPNs位置[n(%)]     4.253 0.373     4.316 0.365
右肺上叶 28(37.84) 17(24.64)     10(32.26) 6(20.69)    
右肺中叶 9(12.16) 9(13.04)     4(12.90) 5(17.24)    
右肺下叶 16(21.62) 24(34.78)     9(29.03) 6(20.69)    
左肺上叶 5(6.76) 5(7.25)     1(3.23) 5(17.24)    
左肺下叶 16(21.62) 14(20.29)     7(22.58) 7(24.14)    
平均结节直径[mm,(±s)] 4.86±1.56 5.44±1.26 2.445 0.015 4.96±1.26 5.39±1.24 2.055 0.042
最大结节直径分层[n(%)]                
<5 mm 33(44.59) 17(24.64) 6.254 0.012 13(41.94) 5(17.24) 4.351 0.037
≥5 mm 41(55.41) 52(75.36)     18(58.06) 24(82.76)    
分叶状[n(%)] 4(5.41) 12(17.39) 5.162 0.023 2(6.45) 7(24.14) 3.676 0.055
血管集束征[n(%)] 42(56.76) 55(79.71) 8.621 0.003 14(45.16) 21(72.41) 4.578 0.032
结节-肺界面[n(%)]     5.740 0.017     4.258 0.039
模糊/晕征 26(35.14) 38(55.07)     8(25.81) 15(51.72)    
清晰 48(64.86) 31(44.93)     23(74.19) 14(48.28)    
形状[n(%)]     0.457 0.499     1.220 0.269
圆形或椭圆形 65(87.84) 63(91.30)     30(96.77) 26(89.66)    
不规则或多边形 9(12.16) 6(8.70)     1(3.23) 3(10.34)    
毛刺征[n(%)] 3(4.05) 13(18.84) 7.856 0.005 5(16.13) 12(41.38) 4.705 0.030
胸膜凹陷[n(%)] 1(1.35) 9(13.04) 7.505 0.006 1(3.23) 6(20.69) 4.434 0.035
空洞[n(%)] 3(4.05) 4(5.80) 0.233 0.629 1(3.23) 3(10.34) 1.220 0.269
空泡征[n(%)] 3(4.05) 11(15.94) 5.714 0.017 2(6.45) 8(27.59) 4.819 0.028
空气支气管征[n(%)] 11(14.86) 20(28.99) 4.193 0.041 4(12.90) 10(34.48) 3.900 0.048
表2 多因素Logistic回归分析恶性SSPNs的风险因素
表3 三种模型鉴别诊断恶性SSPNs的ROC曲线分析
1
Henschke C, Huber R, Jiang L, et al. Perspective on management of low-dose computed tomography findings on low-dose computed tomography examinations for lung cancer screening. from the international association for the study of lung cancer early detection and screening committee[J]. J Thorac Oncol, 2024, 19(4): 565-580.
2
Chen D, Yang L, Zhang W, et al. Prevalence and management of pulmonary nodules: a systematic review and meta-analysis[J]. J Thorac Dis, 2024, 16(7): 4619-4632.
3
Tang FH, Wong HYT, Tsang PSW, et al. Recent advancements in lung cancer research: a narrative review[J]. Translational Lung Cancer Research, 2025, 14(3): 975.
4
Ji Y, Zhang Y, Liu S, et al. The epidemiological landscape of lung cancer: current status, temporal trend and future projections based on the latest estimates from GLOBOCAN 2022[J]. J Natl Cancer Cent, 2025, 5(3): 278-286.
5
刘嘉宁,齐琳琳,陈佳琪,等. CT放射组学对亚厘米实性肺结节良恶性鉴别的应用价值[J]. 中国辐射卫生2024, 33(3): 340-345.
6
Wu Q, Zhou L, Tang W, et al. Inter-observer consistency on subsolid nodule follow-up recommendation based on National Comprehensive Cancer Network (NCCN) guidelines in low-dose computed tomography (LDCT) lung cancer screening[J]. Quant Imaging Med Surg, 2024, 14(9): 6543-6555.
7
Wen M, Zheng Q, Ji X, et al. Precise diagnosis and prognosis assessment of malignant lung nodules: a narrative review[J]. Journal of Thoracic Disease, 2024, 16(11): 7999.
8
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule:a review[J]. Jama, 2022, 327(3): 264-273.
9
Adams SJ, Madtes DK, Burbridge B, et al. Clinical impact and generalizability of a computer-assisted diagnostic tool to risk-stratify lung nodules with CT[J]. J Am Coll Radiol, 2023, 20(2): 232-242.
10
Chen D, Shao L, Dong Y, et al. Challenges and current practices in the management of pulmonary nodules in China: a mixed methods study[J]. J Thorac Dis, 2025, 17(5): 3210-3222.
11
Digby GC, Lam S, Tammemägi M C, et al. Recommendations to Improve Management of Incidental Pulmonary Nodules in Canada: Expert Panel Consensus[J]. Canadian Association of Radiologists Journal, 2024, 75(4): 895-906.
12
解良婕,王剑,阳韬. 采用AI的CT影像特征对肺结节良恶性鉴别的价值分析[J/OL]. 中华肺部疾病杂志(电子版)2024, 17(2): 242-246.
13
黄文君,李巧巧,敬文斌,等. 不同WHO肺癌病理分类下人工智能对肺结节良恶性的诊断效能[J]. 临床放射学杂志2025, 44(1): 76-82.
14
Zhang R, Wei Y, Wang D, et al. Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images[J]. European Radiology, 2024, 34(7): 4218-4229.
15
杨丽,钱桂生. 肺结节临床精准诊断的新理念[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(1): 1-5.
16
范卫杰,张冬. 影像组学及深度学习在肺结节良恶性鉴别诊断中的新理念[J/OL]. 中华肺部疾病杂志(电子版), 2021, 14(5): 549-553.
17
Hu B, Ren W, Feng Z, et al. Correlation between CT imaging characteristics and pathological diagnosis for subcentimeter pulmonary nodules[J]. Thorac Cancer, 2022, 13(7): 1067-1075.
18
Cui SL, Qi LL, Liu JN, et al. A prediction model based on computed tomography characteristics for identifying malignant from benign sub-centimeter solid pulmonary nodules[J]. J Thorac Dis, 2024, 16(7): 4238-4249.
19
丛玉林,徐小虎,沈春林,等. 基于CT特征构建预测肺结节良恶性的机器学习模型[J]. 中国医学物理学杂志2024, 41(10): 1315-1320.
20
He XQ, Huang XT, Luo TY, et al. The differential computed tomography features between small benign and malignant solid solitary pulmonary nodules with different sizes[J]. Quantitative Imaging in Medicine and Surgery, 2024, 14(2): 1348.
21
Liu J, Qi L, Wang Y, et al. Development of a combined radiomics and CT feature-based model for differentiating malignant from benign subcentimeter solid pulmonary nodules[J]. Eur Radiol Exp, 2024, 8(1): 8.
22
Mazzone PJ, Lam L. Evaluating the patient with a pulmonary nodule:a review[J]. Jama, 2022, 327(3): 264-273.
23
Wang R, Qi T. Creation of nomograms that combine clinical, CT, and radiographic features to separate benign from malignant diseases using spiculation or (and) lobulation signs[J]. Current Problems in Diagnostic Radiology, 2025, 54(4): 443-448.
24
Wen Y, Wu W, Liufu Y, et al. Differentiation of granulomatous nodules with lobulation and spiculation signs from solid lung adenocarcinomas using a CT deep learning model[J]. BMC cancer, 2024, 24(1): 875.
25
Li M, Zhu L, Lv Y, et al. Thin-slice computed tomography enables to classify pulmonary subsolid nodules into pre-invasive lesion/minimally invasive adenocarcinoma and invasive adenocarcinoma: a retrospective study[J]. Scientific Reports, 2023, 13(1): 6999.
26
Raad RA, Garrana S, Moreira AL, et al. Imaging and management of subsolid lung nodules[J]. Radiologic Clinics, 2025, 63(4): 517-535.
27
Zhang CR, Wang Q, Feng H, et al. Computed-tomography-based radiomic nomogram for predicting the risk of indeterminate small (5-20 mm) solid pulmonary nodules[J]. Diagn Interv Radiol, 2023, 29(2): 283-290.
28
Shang H, Li J, Jiao T, et al. Differentiation of lung metastases originated from different primary tumors using radiomics features based on CT imaging[J]. Academic Radiology, 2023, 30(1): 40-46.
29
Wu Y, Xia S, Liang Z, et al. Artificial intelligence in COPD CT images: identification, staging, and quantitation[J]. Respiratory Research, 2024, 25(1): 319.
30
Althubiti SA, Paul S, Mohanty R, et al. Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images[J]. Computational and Mathematical Methods in Medicine, 2022, 2022(1): 2733965.
31
Raptis S, Ilioudis C, Theodorou K. Uncovering the diagnostic power of radiomic feature significance in automated lung cancer detection: an integrative analysis of texture, shape, and intensity contributions[J]. BioMedInformatics, 2024, 4(4): 2400-2425.
32
Saihood A, Karshenas H, Nilchi ARN. Deep fusion of gray level co-occurrence matrices for lung nodule classification[J]. Plos one, 2022, 17(9): e0274516.
[1] 唐瑞, 李盼盼, 李玉冰, 崔立刚. USCT声速反演成像定量评估肌肉脂肪含量的实验研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 564-571.
[2] 阚光娟, 孙立群, 王敏言, 李俨育, 谭艳娟, 仇玉轩, 潘淑淑, 朱江. 宫颈胃型腺癌的多模态影像学表现[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1030-1041.
[3] 向娇, 粟英, 兰亚明. 氧饱和度指数联合胸部CT 对新型冠状病毒感染相关急性低氧性呼吸衰竭患者呼吸治疗决策的影响[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 115-121.
[4] 盛海涛, 窦明睿, 王俊杰, 修小龙, 杨建茂, 董长城. 基于CT三维可视化技术的个体化肝分段在解剖性肝切除术中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 258-261.
[5] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[6] 谢汶歆, 马乐, 刘晔, 曹晓明, 张万春. 前列腺特异性膜抗原PET/CT在肾癌诊疗中的应用价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 514-519.
[7] 许猛军, 王泽贤, 郭亚茹, 董海北, 刘欢欢, 史凌云, 郭雯, 刘枫, 吴小进, 曹爱红. CT定位下经皮肺穿刺活检术在肺部肿瘤患者中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 752-756.
[8] 张静莹, 杨颖, 曾雪华, 鲁翔华, 吕晓静, 陈石. 利用定量计算机断层扫描纤维化和肺气肿特征预测特发性肺纤维化患者临床结局[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 714-720.
[9] 吴春兴, 廖庆, 杨海玲, 袁海娟, 彭小林, 张峰, 范日升, 谢良骏. 低剂量SPECT/CT 肺灌注显像诊断慢性阻塞性肺疾病并发肺栓塞的安全性及有效性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 350-354.
[10] 司菊花, 金晓凤, 刘龙群, 张维维, 王子灿, 殷子文. CT 纹理特征对肺磨玻璃结节性质的预测[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 246-250.
[11] 陈嘉艺, 陈佳, 张曦, 张琦. 伴有“反晕征”的IgG4 相关性肺疾病一例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 844-846.
[12] 熊廷伟, 陶阳, 李王佳, 付彬洁, 褚志刚, 吕发金. 分析MPVR技术在诊断肺磨玻璃结节浸润性中的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 575-579.
[13] 吕会来, 刘宇, 李嘉宸, 盖春月, 王明博, 许石, 丁炜禄, 朱永刚, 李振华, 田子强. 食管鳞癌新辅助化疗联合免疫治疗后基于增强CT的临床完全缓解与病理完全缓解相关性分析:一项单中心回顾性研究[J/OL]. 中华胸部外科电子杂志, 2025, 12(03): 136-143.
[14] 马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.
[15] 王宇, 张泽锴, 吴明胜, 王高祥, 孙效辉, 王君, 徐美青, 李田, 徐世斌, 解明然. 术后病理诊断为良性肺结节323例患者临床特征分析[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 167-174.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?