1 |
Arnaud O, Le Loarer F, Tirode F. BAFfling pathologies: Alterations of BAF complexes in cancer[J]. Cancer Lett, 2018, 419: 266-279.
|
2 |
Nambirajan A, Jain D. Recent updates in thoracic SMARCA4-deficient undifferentiated tumor[J]. Semin Diagn Pathol, 2021, 38(5): 83-89.
|
3 |
Nambirajan A, Singh V, Bhardwaj N, et al. SMARCA4/BRG1-deficient non-small cell lung carcinomas: a case series and review of the literature[J]. Arch Pathol Lab Med, 2021, 145(1): 90-98.
|
4 |
Schoenfeld AJ, Bandlamudi C, Lavery JA, et al. The genomic landscape of SMARCA4 alterations and associations with outcomes in patients with lung cancer[J]. Clin Cancer Res, 2020, 26(21): 5701-5708.
|
5 |
Gupta M, Concepcion CP, Fahey CG, et al. BRG1 loss predisposes lung cancers to replicative stress and ATR dependency[J]. Cancer Res, 2020, 80(18): 3841-3854.
|
6 |
Perret R, Chalabreysse L, Watson S, et al. SMARCA4-deficient thoracic sarcomas: Clinicopathologic study of 30 cases with an emphasis on their nosology and differential diagnoses[J]. Am J Surg Pathol, 2019, 43(4): 455-465.
|
7 |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
|
8 |
Lamberti G, Spurr LF, Li Y, et al. Clinicopathological and genomic correlates of programmed cell death ligand 1 (PD-L1) expression in nonsquamous non-small-cell lung cancer[J]. Ann Oncol, 2020, 31(6): 807-814.
|
9 |
Henon C, Blay JY, Massard C, et al. Long lasting major response to pembrolizumab in a thoracic malignant rhabdoid-like SMARCA4-deficient tumor[J]. Ann Oncol, 2019, 30(8): 1401-1403.
|
10 |
Naito T, Umemura S, Nakamura H, et al. Successful treatment with nivolumab for SMARCA4-deficient non-small cell lung carcinoma with a high tumor mutation burden: A case report[J]. Thorac Cancer, 2019, 10(5): 1285-1288.
|
11 |
Yang P, Xiong F, Lin Y, et al. Effectiveness of tislelizumab when combined with etoposide and carboplatin in patients with SMARCA4-deficient undifferentiated thoracic tumor: A case report[J]. Transl Cancer Res, 2023, 12(4): 1041-1048.
|
12 |
Naito T, Udagawa H, Umemura S, et al. Non-small cell lung cancer with loss of expression of the SWI/SNF complex is associated with aggressive clinicopathological features, PD-L1-positive status, and high tumor mutation burden[J]. Lung Cancer, 2019, 138: 35-42.
|
13 |
Dagogo-Jack I, Schrock AB, Kem M, et al. Clinicopathologic Characteristics of BRG1-Deficient NSCLC[J]. J Thorac Oncol, 2020, 15(5): 766-776.
|
14 |
Luo J, Ding B, Campisi A, et al. Molecular, clinicopathological characteristics and surgical results of resectable SMARCA4-deficient thoracic tumors[J]. J Cancer Res Clin Oncol, 2023, 149(8): 4455-4463.
|
15 |
Yoshida A, Kobayashi E, Kubo T, et al. Clinicopathological and molecular characterization of SMARCA4-deficient thoracic sarcomas with comparison to potentially related entities[J]. Mod Pathol, 2017, 30(6): 797-809.
|
16 |
Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma[J]. Nature, 2014, 511(7511): 543-550.
|
17 |
Chiba Y, Kawanami T, Yamasaki K, et al. Hyper-progressive disease after immune checkpoint inhibitor in SMARCA4-deficient small-cell lung carcinoma[J]. Respirol Case Rep, 2020, 8(8): e00667.
|
18 |
Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma[J]. Clin Cancer Res, 2017, 23(12): 3012-3024.
|
19 |
Saleh MM, Scheffler M, Merkelbach-Bruse S, et al. Comprehensive analysis of TP53 and KEAP1 mutations and their impact on survival in localized-and advanced-stage NSCLC[J]. J Thorac Oncol, 2022, 17(1): 76-88.
|
20 |
Zheng D, Wang R, Zhang Y, et al. The prevalence and prognostic significance of KRAS mutation subtypes in lung adenocarcinomas from Chinese populations[J]. Onco Targets Ther, 2016, 9: 833-843.
|
21 |
Liu SY, Sun H, Zhou JY, et al. Clinical characteristics and prognostic value of the KRAS G12C mutation in Chinese non-small cell lung cancer patients[J]. Biomark Res, 2020, 8: 22.
|
22 |
Negrao MV, Skoulidis F, Montesion M, et al. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer[J]. J Immunother Cancer, 2021, 9(8): e002891.
|
23 |
Liu C, Zheng S, Jin R, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity[J]. Cancer Lett, 2020, 470: 95-105.
|
24 |
Alessi JV, Ricciuti B, Spurr LF, et al. SMARCA4 and other SWItch/sucrose nonfermentable family genomic alterations in NSCLC: Clinicopathologic characteristics and outcomes to immune checkpoint inhibition[J]. J Thorac Oncol, 2021, 16(7): 1176-1187.
|
25 |
Shang X, Li Z, Sun J, et al. Survival analysis for non-squamous NSCLC patients harbored STK11 or KEAP1 mutation receiving atezolizumab[J]. Lung Cancer, 2021, 154: 105-112.
|
26 |
Hiraoka K, Miyamoto M, Cho Y, et al. Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma[J]. Br J Cancer, 2006, 94(2): 275-280.
|
27 |
Skoulidis F, Heymach JV. Co-occurring genomic alterations in non-small-cell lung cancer biology and therapy[J]. Nat Rev Cancer, 2019, 19(9): 495-509.
|
28 |
Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma[J]. Cancer Discov, 2018, 8(7): 822-835.
|
29 |
Simon PC, Parul D, Radu D, et al. STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort[J]. ESMO Open, 2020, 5(2): e000706.
|
30 |
Xu X, Yang Y, Liu X, et al. NFE2L2/KEAP1 mutations correlate with higher tumor mutational burden value/PD-L1 expression and potentiate improved clinical outcome with immunotherapy[J]. Oncologist, 2020, 25(6): e955-e963.
|