切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (04) : 445 -449. doi: 10.3877/cma.j.issn.1674-6902.2019.04.009

论著

斯钙素-1在慢性阻塞性肺疾病平滑肌增殖中的作用研究
许家艳1, 杨捷1, 乔云飞1, 杨俊俊1(), 徐兴祥1,()   
  1. 1. 225001 扬州,扬州大学临床医学院江苏省苏北人民医院呼吸与危重症医学科
  • 收稿日期:2019-04-11 出版日期:2019-08-20
  • 通信作者: 杨俊俊, 徐兴祥
  • 基金资助:
    江苏省苏北人民医院院基金项目(yzucms201907)

Effect of Stanniocalcin-1 on proliferation of airway smooth muscle in mice with chronic obstructive pulmonary disease

Jiayan Xu1, Jie Yang1, Yunfei Qiao1, Xingxiang Xu1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Northern Jiangsu People′s Hospital, Clinical Medical School of Yangzhou University, Yangzhou 225001, Jiangsu Province, China
  • Received:2019-04-11 Published:2019-08-20
  • Corresponding author: Xingxiang Xu
引用本文:

许家艳, 杨捷, 乔云飞, 杨俊俊, 徐兴祥. 斯钙素-1在慢性阻塞性肺疾病平滑肌增殖中的作用研究[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 445-449.

Jiayan Xu, Jie Yang, Yunfei Qiao, Xingxiang Xu. Effect of Stanniocalcin-1 on proliferation of airway smooth muscle in mice with chronic obstructive pulmonary disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(04): 445-449.

目的

探讨斯钙素-1(Stanniocalcin-1, STC1)对慢性阻塞性肺疾病(COPD)平滑肌增殖的影响及STC1在COPD气道重塑中的作用。

方法

采用臭氧暴露法构建COPD小鼠模型,选取BALB/c雌性小鼠24只,将小鼠随机分为4组:1周空气对照组(简称1周空气组)、1周臭氧暴露组(简称1周臭氧组)、3周空气对照组(简称3周空气组)、3周臭氧暴露组(简称3周臭氧组),每组6只。HE染色观察肺部炎症、肺泡间距及基底膜厚度。采用免疫组织化学法(简称免疫组化)检测小鼠肺组织α-平滑肌动蛋白(α-SMA)及STC1表达。采用2%及10%胎牛血清刺激人原代平滑肌细胞增殖,外源加入重组STC1(rhSTC1)处理平滑肌细胞,EdU染色检测平滑肌细胞增殖。

结果

臭氧暴露诱导小鼠肺部炎症、肺气肿及气道重塑发生(肺组织基底膜增厚及平滑肌细胞标志物α-SMA表达增加)。STC1主要表达在支气管上皮顶端膜,且在COPD小鼠中表达升高(P<0.05),但随着臭氧暴露3周,肺组织STC1较α-SMA表达下降(P<0.05)。外源加入rhSTC1抑制了平滑肌细胞增殖(P<0.01)。

结论

支气管上皮表达的STC1能够抑制平滑肌细胞增殖,外源给予足量的STC1可能延缓COPD气道重塑的发生。

Objective

To investigate the effect of Stanniocalcin-1 (STC1) on the proliferation of airway smooth muscle and explore the possible role of STC1 in the airway remodeling in the mice with chronic obstructive pulmonary disease (COPD).

Methods

COPD mice model was established by ozone (O3) exposure. Twenty-four BALB/c female mice were randomly divided into four groups (n=6): 1-week control (1WC) group, 1-week O3 exposed (1WO3) group, 3-week control (3WC) group and 3-week O3 exposed (3WO3) group. Hematoxylin-eosin (HE) staining was employed to observe the pulmonary inflammation, the alveolar spacing and the basement membrane thickness. Immunohistochemistry technique was used to detect the expression of α-SMA and STC1 in the lung tissues of the mice. Simultaneously, human airway smooth muscle cells (HASMCs) were stimulated by 2% and 10% FBS, respectively. The HASMCs were then treated with recombinant STC1 (rhSTC1). The proliferation of HASMCs was detected by EdU staining.

Results

O3 exposure could induce pulmonary inflammation, emphysema and airway remodeling in the mice (basement membrane thickening and increased expression of smooth muscle cell marker α-SMA). Immunohistochemical analysis demonstrated that STC1 expression showed intense staining in the apical membrane of the bronchial epithelial cells and was increased in the O3-exposed mice. However, with O3 exposure for 3 weeks, the expression of STC1 in the lung tissues decreased compared with that of α-SMA. And rhSTC1 added the inhibition of the proliferation of smooth muscle cells.

Conclusion

STC1 expression in the bronchial epithelium can inhibit the proliferation of airway smooth muscle cells. Adequate STC1 administration may delay the occurrence of airway remodeling in the mice with COPD.

图1 小鼠病理学检测结果;注:A: 1周空气组和1周臭氧组;B: 3周空气组和3周臭氧组(HE×200)。*P<0.05,**P<0.01,***P<0.001
图2 小鼠基底膜厚度;注:A:1周空气组和1周臭氧组;B:3周空气组和3周臭氧组(HE×200) ;箭头指示基底膜。*P<0.05
图3 小鼠肺组织中α-SMA的表达水平;注:A:1周空气组和1周臭氧组;B:3周空气组和3周臭氧组(HE×400) ;箭头指示α-SMA表达部位。**P<0.01
图4 小鼠支气管上皮STC1的表达水平;注:A:1周空气组和1周臭氧组;B:3周空气组和3周臭氧组(HE×200) ;箭头指示STC1表达部位。*P<0.05
图5 小鼠肺组织中STC1/α-SMA的水平。*P<0.05
图6 STC1对平滑肌细胞增殖的影响;注:A:Edu染色检测STC1对平滑肌增殖的影响;B:SPSS20.0计算EdU染色。**P<0.01,***P<0.001
1
任成山,王关嵩,钱桂生. 慢性阻塞性肺疾病的成因及其治疗的困惑与希望[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 127-141.
2
Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary[J]. Eur Respir J, 2017, 49(3). pii: 1700214.
3
Yan F, Gao H, Zhao H, et al. Roles of airway smooth muscle dysfunction in chronic obstructive pulmonary disease[J]. J Transl Med, 2018, 16(1): 262.
4
Fischer KD, Agrawal DK. Vitamin D regulating TGF-beta induced epithelial-mesenchymal transition[J]. Respir Res, 2014, 15: 146.
5
Hong W, Peng G, Hao B, et al. Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via alpha7 nAChR[J]. Cell Physiol Biochem, 2017, 43(3): 986-1002.
6
Wagner GF, Hampong M, Park CM, et al. Purification, characterization,and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius[J]. Gen Comp Endocrinol, 1986, 63(3): 481-491.
7
Huang L, Zhang L, Ju H, et al. Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury[J]. Sci Rep, 2015, 5: 18117.
8
Zlot C, Ingle G, Hongo J, et al. Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor[J]. J Biol Chem, 2003, 278(48): 47654-47659.
9
许家艳,孟亚奇,贾 嫚,等. 人支气管上皮细胞表达的斯钙素-1在上皮间充质转化中的作用研究[J]. 南京医科大学学报(自然科学版), 2018, 38(9): 1198-1203.
10
Zhang Y, Shan P, Srivastava A, et al. Endothelial Stanniocalcin 1 Maintains Mitochondrial Bioenergetics and Prevents Oxidant-Induced Lung Injury via Toll-Like Receptor 4[J]. Antioxid Redox Signal, 2019, 30(15): 1775-1796.
11
Hirota N, Martin JG. Mechanisms of airway remodeling[J]. Chest, 2013, 144(3): 1026-1032.
12
Rasmussen JE, Sheridan JT, Polk W, et al. Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction [J]. J Biol Chem, 2014, 289(11): 7671-7681.
13
Xiang J, Guo R, Wan C, et al. Regulation of Intestinal Epithelial Calcium Transport Proteins by Stanniocalcin-1 in Caco2 Cells[J]. Int J Mol Sci, 2016, 17(7):pii: E1095.
14
Ono M, Ohkouchi S, Kanehira M, et al. Mesenchymal stem cells correct inappropriate epithelial-mesenchyme relation in pulmonary fibrosis using stanniocalcin-1[J]. Mol. Ther., 2015, 23(3): 549-560.
[1] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[2] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[3] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[4] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[5] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[6] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[7] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[8] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[9] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[10] 黄杰, 夏瑜, 姜艳娇, 刘云. GPR146经P-JNK通路对肺动脉高压小鼠血管重塑的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 460-465.
[11] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[12] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[13] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要