切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (05) : 596 -600. doi: 10.3877/cma.j.issn.1674-6902.2019.05.012

论著

miR21介导Ang(1-7)对肺成纤维细胞AngⅡ诱导的NLR3炎性体激活的抑制作用
申光富1, 杜培1, 余蕊1, 谢召峰1, 罗长琴2,()   
  1. 1. 725000 安康,安康市中心医院呼吸科
    2. 725000 安康,安康市中心医院消化内科
  • 收稿日期:2019-05-06 出版日期:2019-10-20
  • 通信作者: 罗长琴

Inhibition of miR21-mediated Ang (1-7) on activation of AngⅡ-induced inflammatory body in pulmonary fibroblasts

Guangfu Shen1, Pei Du1, Rui Yu1, Zhaofeng Xie1, Changqin Luo2,()   

  1. 1. Department of Respiratory Medicine, Ankang Central Hospital, Ankang 725000, Shanxi Province, China
    2. Department of Gastroenterology, Ankang Central Hospital, Ankang 725000, Shanxi Province, China
  • Received:2019-05-06 Published:2019-10-20
  • Corresponding author: Changqin Luo
引用本文:

申光富, 杜培, 余蕊, 谢召峰, 罗长琴. miR21介导Ang(1-7)对肺成纤维细胞AngⅡ诱导的NLR3炎性体激活的抑制作用[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 596-600.

Guangfu Shen, Pei Du, Rui Yu, Zhaofeng Xie, Changqin Luo. Inhibition of miR21-mediated Ang (1-7) on activation of AngⅡ-induced inflammatory body in pulmonary fibroblasts[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(05): 596-600.

目的

探讨miR21对肺成纤维细胞增殖和凋亡的影响,及其可能的作用机制。

方法

将miR21 NC、inhibitor和mimic转染至原代肺成纤维细胞,按照细胞处理方式分为空白对照组、miR21 NC组、inhibitor组和mimic组。利用CCK-8细胞增殖法检测miR21对肺成纤维细胞增殖的影响;流式细胞仪检测miR21对肺成纤维细胞凋亡的影响;通过RT-PCR法检测转染前后肺成纤维细胞miR21、Ang(1-7)基因水平的表达;应用免疫印迹Western blot检测转染前后miR21、NLRP3蛋白表达水平变化。

结果

CCK8及流式细胞仪检测显示,miR21具有显著促进肺成纤维细胞增殖、抑制肺成纤维细胞凋亡的作用;RT-PCR分析显示,细胞转染成功后,miR21 mimic/inhibitor组分别抑制/促进了Ang(1-7)表达,促进/抑制了AngⅡ表达(P<0.05),即miR21具有抑制Ang(1-7),促进AngⅡ表达的效果。Western Blot分析表明,miR21 mimic/inhibitor具有上调/下调AngⅡ、NLRP3蛋白表达水平的作用,与NC对照组相比,差异具有统计学意义(P<0.05)。

结论

miR21具有促进肺成纤维细胞增殖、抑制肺成纤维细胞凋亡的作用,其机制可能与miR21介导Ang(1-7)对肺成纤维细胞AngⅡ诱导的NLR3炎性体激活相关。

Objective

To investigate the effects of miR21 on the proliferation and apoptosis of pulmonary fibroblasts and the possible mechanisms.

Methods

MiR21 NC (miR21 NC group), the inhibitor (inhibitor group), the mimics (mimics group), and nothing (blank control group) were transfected into the primary lung fibroblasts, respectively. The effects of miR21 on the proliferation of lung fibroblasts were detected by CCK-8 cell proliferation. The effects of miR21 on the apoptosis of pulmonary fibroblasts were detected by flow cytometry. The expression levels of miR21 and Ang (1-7) in the pulmonary fibroblasts were detected by reverse transcription polymerase chain reaction (RT-PCR) before and after transfection. The expression levels of miR21 and NLRP3 were detected before and after transfection by Western blotting method.

Results

According to the results of CCK8 and flow cytometry detection, miR21 can significantly promote the proliferation of pulmonary fibroblasts and inhibit the apoptosis of pulmonary fibroblasts. RT-PCR analysis showed that after the success of cell transfection, the miR21 mimics group and the inhibitor group respectively inhibited/promoted Ang (1-7) expression and promoted/inhibited Ang Ⅱ expression (P<0.05). That is to say, miR21 could inhibit miR21 Ang (1-7) and promote Ang Ⅱ expression. Western blot analysis showed that the miR21 mimic/inhibitor could raise/lower the expression levels of Ang Ⅱ and the expression levels of NLRP3 protein, which had statistical significant difference compared with the NC control groups (P<0.05).

Conclusion

MiR21 can promote the proliferation and inhibit the apoptosis of pulmonary fibroblasts, and its mechanism may be related to the effect of miR21-mediated Ang (1-7) on the activation of AngⅡ-induced inflammatory body in pulmonary fibroblasts.

表1 波形蛋白在肺成纤维细胞中的表达
表2 miR21对肺成纤维细胞增殖的影响
表3 miR21对肺成纤维细胞凋亡的影响
表4 PCR过程中引物序列设计
表5 RT-PCR检测miR21、Ang(1-7)、AngⅡ基因表达情况
图1 RT-PCR检测miR21、Ang(1-7)基因表达情况
表6 miR21对肺成纤维细胞对AngⅡ、NLRP3蛋白表达水平的影响
图2 Western Blot检测AngⅡ、NLRP3蛋白表达情况
1
Hosseini S, Imenshahidi M, Hosseinzadeh H, et al. Effects of plant extracts and bioactive compounds on attenuation of bleomycin-induced pulmonaryfibrosis[J]. Biomed Pharmacother, 2018, 107: 1454-1465.
2
Haak AJ, Tan Q, Tschumperlin DJ, et al. Matrix biomechanics and dynamics in pulmonary fibrosis[J]. Matrix Biology, 2018, 73: 64-76.
3
Zhan TW, Tian YX, Wang Q, et al. Cangrelor alleviates pulmonary fibrosis by inhibiting GPR17-mediated inflammation in mice[J]. Int Immunopharmacol, 2018, 62: 261-269.
4
Ninou I, Kaffe E, Müller S, et al. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis[J]. Pulm Pharmacol Ther, 2018, 52: 32-40.
5
Risbud RM, Lee C, Porter BE. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus[J]. Brain Res, 2011, 1424: 53-59.
6
Kilic T, Topkaya SN, Ozkan Ariksoysal D, et al. Electrochemical based detection of microRNA, mir21 in breast cancer cells[J]. Biosens Bioelectron, 2012, 38(1): 195-201.
7
Tetzner A, Naughton M, Gebolys K, et al. Decarboxylation of Ang-(1-7) to Ala1-Ang-(1-7) leads to significant changes in pharmacodynamics[J]. Eur J Pharmacol, 2018, 833: 116-123.
8
Cha HJ, Kim HY, Kim HS, et al. Sulfatase 1 mediates the attenuation of Ang Ⅱ-induced hypertensive effects by CCL5 in vascular smooth muscle cells from spontaneously hypertensive rats[J]. Cytokine, 2018, 10: 1-8.
9
Gao M, Du Y, Xie JW, et al. Redox signal-mediated TRPM2 promotes Ang Ⅱ-induced adipocyte insulin resistance via Ca2+-dependent CaMKⅡ/JNK cascade[J]. Metabolism, 2018, 85: 313-324.
10
Wei W, Zhang HY, Gong XK, et al. Mechanism of MEN1 gene in radiation-induced pulmonary fibrosis in mice[J]. Gene, 2018, 678: 252-260.
11
Clercx C, Fastrès A, Roels E, et al. Idiopathic pulmonary fibrosis in West Highland white terriers: An update[J]. Vet J, 2018, 242: 53-58.
13
Yang M, Qian X, Wang N, et al. Inhibition of MARCO ameliorates silica-induced pulmonary fibrosis by regulating epithelial-mesenchymal transition[J]. Toxicol Lett, 2019, 301: 64-72.
14
Guo J, Yang Z, Jia Q, et al. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in the rat silicosis model[J]. Toxicol Lett, 2019, 300: 59-66.
15
Koroleva I, Nazarenko M, Markov A, et al. The methylation level of MIR10B and MIR21 genes promoters in carotid atherosclerosis[J]. Atherosclerosis, 2018, 275: 189.
16
Banerjee N, Bandyopadhyay AK, Dutta S, et al. Increased microRNA 21 expression contributes to arsenic induced skin lesions, skin cancers and respiratory distress in chronically exposed individuals[J]. Toxicology, 2017, 378: 10-16.
17
Li Z, Yang L, Liu X, et al. Long noncoding RNA MEG3 inhibits proliferation of chronic myeloid leukemia cells by sponging microRNA21[J]. Biomed Pharmacother, 2018, 104: 181-192.
18
Shrestha S, Shen J, Giacomelli P, et al. Ang-2 but not Ang-1 expression in perivascular soft tissue tumors[J]. J Orthop, 2017, 14(1): 147-153.
19
Prasad AM, Ketsawatsomkron P, Nuno DW, et al. Role of CaMKⅡ in Ang-Ⅱ-dependent small artery remodeling[J]. Vascul Pharmacol, 2016, 87: 172-179.
20
Pan Y, Zhou F, Song Z, et al. Oleanolic acid protects against pathogenesis of atherosclerosis, possibly via FXR-mediated angiotensin (Ang)-(1-7) upregulation[J]. Biomed Pharmacother., 2018, 97: 1694-1700.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 孙鸿坤, 艾虹, 陈正. 内质网应激介导的牙周炎骨改建失衡的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 211-218.
[3] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[4] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[7] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[8] 季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.
[9] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[10] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[11] 陈丽璇, 窦培宁, 肖扬. 干细胞治疗早发性卵巢功能不全的现状及未来展望[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 239-248.
[12] 孟煜凡, 李永政, 樊知遥, 展翰翔. 瘤内微生物在胰腺癌发病和演进中的作用机制及研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 577-582.
[13] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[14] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要