切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (01) : 43 -47. doi: 10.3877/cma.j.issn.1674-6902.2020.01.009

论著

Lyn激酶介导Erk-sp1信号通路改善慢性阻塞性肺疾病的观察分析
刘莉敏1,(), 熊静1, 李玉磊1, 邱晶晶1, 张瑞芳1   
  1. 1. 430064 武汉,武汉科技大学附属天佑医院呼吸内科
  • 收稿日期:2019-07-13 出版日期:2020-02-25
  • 通信作者: 刘莉敏
  • 基金资助:
    湖北省卫计委一般面上项目(WJ2015MB238)

Lyn kinase inhibiting inflammatory response and improving chronic obstructive pulmonary disease by mediating Erk-sp1 signaling pathway

Limin Liu1,(), Jing Xiong1, Yulei Li1, Jingjing Qiu1, Ruifang Zhang1   

  1. 1. Department of Respiratory Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430064, China
  • Received:2019-07-13 Published:2020-02-25
  • Corresponding author: Limin Liu
引用本文:

刘莉敏, 熊静, 李玉磊, 邱晶晶, 张瑞芳. Lyn激酶介导Erk-sp1信号通路改善慢性阻塞性肺疾病的观察分析[J]. 中华肺部疾病杂志(电子版), 2020, 13(01): 43-47.

Limin Liu, Jing Xiong, Yulei Li, Jingjing Qiu, Ruifang Zhang. Lyn kinase inhibiting inflammatory response and improving chronic obstructive pulmonary disease by mediating Erk-sp1 signaling pathway[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(01): 43-47.

目的

探讨Lyn激酶对慢性阻塞性肺疾病(COPD)小鼠的作用及其可能机制。

方法

将C57BL/6j野生型小鼠与C57BL/6j Lyn+转基因小鼠分别随机分为野生型对照组(WT组)、野生型模型组(WT+COPD组)、Lyn+对照组(Lyn+组)、Lyn+模型组(Lyn++COPD组),每组各8只小鼠。WT+COPD组与Lyn++COPD组小鼠采用香烟熏吸加气道内注入脂多糖法进行COPD造模,60 d后采用肺功能检测仪记录小鼠相关肺功能指标,HE染色观察小鼠肺组织病理形态变化,ELISA法检测血清与肺泡灌洗液(BALF)中IL-1β、IL-6、IL-10与TNF-α的含量,Western blot检测肺组织中Erk-sp1信号通路相关蛋白表达水平。

结果

WT组与Lyn+组小鼠肺组织无明显病变现象,WT+COPD组肺组织中肺泡结构破坏,出现大量炎性细胞浸润,Lyn++COPD组小鼠肺组织的病变情况较WT+COPD组小鼠明显减轻。与WT组小鼠比较,WT+COPD组小鼠的Ri升高,Cdyn与FEV0.3%/FVC下降,血清和BALF中IL-1β、IL-6、IL-10、TNF-α的含量增加,肺组织中pErk、Erk、sp1蛋白水平增加,差异均具有统计学意义(P<0.05);与Lyn+组比较,Lyn++COPD组Ri升高而Cdyn、FEV0.3%/FVC下降,血清和BALF中IL-1β、IL-6、IL-10、TNF-α的含量增加,肺组织中pErk、Erk、sp1蛋白水平增加,差异均具有统计学意义(P<0.05);与WT+COPD组比较,Lyn++COPD组Ri下降而Cdyn与FEV0.3%/FVC有所上升,IL-1β、IL-6、IL-10、TNF-α的含量降低,肺组织中pErk、Erk、sp1的蛋白水平降低,差异均具有统计学意义(P<0.05)。

结论

Lyn激酶通过抑制炎症反应来减轻小鼠COPD,其机制可能与Erk-sp1信号通路密切相关。

Objective

To study the effect of Lyn kinase on the mice with chronic obstructive pulmonary disease (COPD) and its possible mechanism.

Methods

C57BL/6j wild type mice and C57BL/6j Lyn+ transgenic mice were randomly divided into a wild type control group (WT group, n=8), a wild type model group (WT+ COPD group, n=8), a Lyn+ control group (Lyn+ group, n=8), and a Lyn+ model group (Lyn+ + COPD group, n=8). The mice in the WT+ COPD group and the Lyn+ + COPD group were modeled by COPD using cigarette smoking and lipopolysaccharide injection into the airway. And 60 days later, the related lung function indicators were recorded by a lung function tester, the pathological changes in the lung tissues were observed with HE staining, the contents of IL-1β, IL-6, IL-10 and TNF-α in the serum and in the alveolar lavage fluid (BALF) were detected with ELISA method, and the expression of Erk-sp1 signaling pathway-related proteins in the lung tissues was detected with Western blotting method.

Results

The lung tissues of the mice in the WT group and in the Lyn+ group had no obvious pathological changes. The alveolar structure in the lung tissues of the WT+ COPD group was damaged, and a large number of inflammatory cell infiltration occurred. The pulmonary alveolar rupture and inflammatory cell infiltration in the Lyn+ + COPD group were improved compared with that of the WT+ COPD group. In the WT+ COPD group, Ri increased, Cdyn and FEV 0.3%/FVC decreased, the contents of IL-1β, IL-6, IL-10 and TNF-α in the serum and BALF were all increased, pErk, Erk and sp1 protein levels in the lung tissues increased compared with the WT group, and the differences were statistically significant between the two groups (P<0.05). In the Lyn+ + COPD group, Ri was increased while Cdyn and FEV0.3%/FVC were decreased, and the levels of IL-1β, IL-6, IL-10 and TNF-α in the serum and BALF were increased, the protein levels of pErk, Erk and sp1 increased in the tissues compared with the Lyn+ group, and the differences were statistically significant between the two groups (P<0.05). In the Lyn+ + COPD group, Ri decreased while Cdyn and FEV0.3%/FVC increased, the contents of IL-1β, IL-6, IL-10 and TNF-α decreased, the protein levels of pErk, Erk and sp1 decreased compared with the WT+ COPD group, and the differences were statistically significant between the two groups (P<0.05).

Conclusion

Lyn kinase can alleviate COPD in mice by inhibiting the inflammatory response, and its mechanism may be closely related to Erk-sp1 signaling pathway.

图1 各组小鼠肺功能检测;注:与WT组比较,*P<0.05,与Lyn+组比较,#P<0.05,与WT+COPD组比较,△P<0.05
图2 各组小鼠肺组织病理改变观察(HE×200)
表1 各组小鼠血清中炎症细胞因子表达情况(±s)
表2 各组小鼠BALF中炎症细胞因子表达情况(±s)
图3 各组小鼠肺组织Erk/sp1相关蛋白表达;注:与WT组比较,*P<0.05,与Lyn+组比较,#P<0.05,与WT+COPD组比较,△P<0.05
1
任成山,王关嵩,钱桂生. 慢性阻塞性肺疾病的成因及其治疗的困惑与希望[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(2): 127-141.
2
檀春玲. 哮喘-慢性阻塞性肺疾病重叠的研究进展[J]. 疑难病杂志,2018, 17(6): 639-643.
3
Mannino DM, Higuchi K, Yu TC, et al. Economic burden of COPD in the presence of comorbidities[J]. Chest, 2016, 148(1): 138-150.
4
Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence,and future trends[J]. The Lancet, 2016, 370(9589): 765-773.
5
郑延龙. 慢性阻塞性肺疾病气道黏液高分泌机制研究[J]. 世界最新医学信息文摘,2019, 19(74): 29-31.
6
Daiana S, Konstantinos K, Emil L, et al. Differences in COPD exacerbation risk between women and men[J]. Chest, 2019, 156(4): 674-684.
7
刘新艳. 氧化应激与慢性阻塞性肺疾病的相关性研究[J]. 河北医药,2019, 41(20): 3173-3176+3180.
8
刘 琴,杨振华. 血清炎性标志物与慢性阻塞性肺疾病相关性研究进展[J]. 临床肺科杂志,2019, 24(11): 2113-2116.
9
Wang Z, Zhao J, Wang T, Du X, et al. Fine-particulate matter aggravates cigarette smoke extract-induced airway inflammation via Wnt5a-ERK pathway in COPD[J]. Int J Chronic Obstr, 2019, 14: 979-994.
10
Wimalachandra D, Yang JX, Zhu L, et al. Long-chain glucosylceramides crosstalk with LYN mediates endometrial cell migration[J]. BBA-Biomembranes, 2018, 1863(1): 71-80.
11
Li G, Fox JR, Liu Z, et al. Lyn mitigates mouse airway remodeling by downregulating the TGF-beta3 isoform in house dust mite models[J]. J Immunol, 2013, 191(11): 5359-5370.
12
Kim DK, Beaven MA, Metcalfe DD, et al. Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells[J]. J Allergy Clin Immun, 2018, 142(1): 195-206.
13
戴 曦,李国平,杨小琼,等. Lyn激酶对肺腺癌EGFR下游信号通路的调节作用研究[J]. 中国癌症杂志,2018, 28(01): 43-49.
14
Gavali S, Gupta MK, Daswani B, et al. LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function[J]. BBA-Mol Basis Dis, 2018, 1865(3): 547-557.
15
黄文锋,陈斯宁,吴嘉冬,等. 慢性阻塞性肺疾病大鼠模型的构建[J]. 现代医药卫生,2019, 35(06): 801-803.
16
余晓丹,李 铮. COPD病人共患疾病的种类在COPD稳定期病人中的预后价值[J]. 蚌埠医学院学报,2019, 44(11): 1473-1476.
17
王青青,荣 令. COPD中炎性细胞及分子机制的研究进展[J]. 临床肺科杂志,2019, 12: 2258-2262.
18
付传发,张 勇,尹玉婷. 慢性阻塞性肺疾病不同亚型肺气肿与肺功能的相关性研究[J]. 临床医药文献电子杂志,2019, 6(78): 81.
19
Kerdidani D, Magkouta S, Tsoumakidou M. Emphysema assessment for personalized immunotherapy response prediction in lung cancer patients[J]. J Thoracic Dis, 2019, 11(15): 2034-2035.
20
张 伟,孙璐璐,韩 佳,等. COPD模型大鼠不同分期肺脏损伤程度与肝损害的相关性研究[J]. 中医药学报,2013, 41(02): 26-29.
21
郑 强,杨远征,陈志林,等. 内皮素-1对COPD炎症和氧化应激反应的影响[J]. 中国病理生理杂志,2018, 34 (09): 1696-1700.
22
Zeng Z, Li M, Chen J, et al. Reduced MBD2 expression enhances airway inflammation in bronchial epithelium in COPD[J]. Int J Chronic Obstr, 2018, 13: 703-715.
23
Fletcher SC, Grou CP, Legrand AJ, et al. Sp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage[J]. Nucleic Acids Res, 2018, 46(4): 1834-1846.
24
Ardura JA, Gutiérrez-Rojas I, lvarez-Carrión L, et al. The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK1/2 regulation[J]. Carcinogenesis, 2019, 40(7): 828-839.
25
Isis CS, Raymond BN, Bowden T. Membrane-Type 1 matrix metal loproteinase is regulated by Sp1 through the differential activation of AKT, JNK, and ERK pathways in human prostate tumor cells[J]. Neoplasia, 2007, 9(5): 406-417.
[1] 陈腊青, 林佳佳, 毛洪刚, 童冠海, 汪梦娜, 夏红波, 刘卓, 徐海霞, 赵玉华, 张传领. 血清细胞因子及呼出气一氧化氮在哮喘-慢性阻塞性肺疾病重叠综合征中的临床意义[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 316-320.
[2] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[5] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[6] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[7] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[8] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[9] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[10] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[11] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[12] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[13] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要