切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (02) : 187 -191. doi: 10.3877/cma.j.issn.1674-6902.2022.02.010

论著

凝血功能异常对新冠肺炎重症患者的预后意义
吴文昊1, 王康1, 朱端1, 张厚丽1, 陈俞坊1, 周向东1,()   
  1. 1. 400038 重庆,陆军(第三)军医大学第一附属医院呼吸与危重症医学科
  • 收稿日期:2021-06-17 出版日期:2022-04-25
  • 通信作者: 周向东

Prognostic significance of abnormal coagulation function in critically ill patients of COVID-19

Wenhao Wu1, Kang Wang1, Duan Zhu1, Houli Zhang1, Yufang Chen1, Xiangdong Zhou1,()   

  1. 1. Institute of Respiratory Diseases, Department of Respiratory, the First Affiliated Hospital, Army Military Medical University, Chongqing 400038, China
  • Received:2021-06-17 Published:2022-04-25
  • Corresponding author: Xiangdong Zhou
引用本文:

吴文昊, 王康, 朱端, 张厚丽, 陈俞坊, 周向东. 凝血功能异常对新冠肺炎重症患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 187-191.

Wenhao Wu, Kang Wang, Duan Zhu, Houli Zhang, Yufang Chen, Xiangdong Zhou. Prognostic significance of abnormal coagulation function in critically ill patients of COVID-19[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(02): 187-191.

目的

分析新型冠状病毒肺炎(corona virus disease 2019, COVID-19)患者凝血功能的临床特征,及其对重症化的预测和预后意义。

方法

收集2020年2月至4月在武汉泰康同济医院确诊的COVID-19患者356例的凝血功能指标,分析其与COVID-19重症化、预后的关联。

结果

356例患者入院时,普通型200例,重型118例,危重38型例。出院时,普通型190例,重型107例,危重型59例。患者凝血酶原时间(prothrombin time, PT)越长、D二聚体越高(D-dimer, DD)D-二聚体越高(D-dimer, D-dimer)、血小板计数越低,诊断为重型和危重型的概率越高(P<0.05)。年龄显著影响重症化(P<0.05,OR=1.054),年龄每增加1,重症化概率提升0.054倍。PT能显著影响重症化(P<0.05,OR=1.245),PT每提升1,重症化概率提升0.245倍。

结论

高龄、心血管系统基础疾病、PT延长、D二聚体升高,是COVID-19患者重症化的高危因素和预测、预后重要因素。

Objective

To analyze the clinical characteristics of blood coagulation function in patients with COVID-19 and its significance in predicting and prognosis of severe symptoms.

Method

The coagulation function data of COVID-19 patients diagnosed in Wuhan Taikang Tongji Hospital from February to April 2020 were collected and their correlation with the severity and prognosis of COVID-19 patients.

Results

A total of 356 patients who met the criteria were collected. at the time of admission, there were 200 cases of common type, 118 cases of severe type and 38 cases of critical type. At discharge, there were 190 cases of common type, 107 cases of severe type and 59 cases of critical type. The critically ill patients with significantly elevated D-dimer and heparin intervention were defined as heparin group, and the critically ill patients with significantly elevated D-dimer without heparin intervention were defined as non-heparin group. There were 53 cases in heparin group and 41 cases in non-heparin group. The longer the prothrombin time (PT), the higher the D-dimer (DD), the higher the D-dimer (D-dimer) and the lower the platelet count, the higher the probability of diagnosis of severe and critical patients. Age could significantly affect the severity of symptoms (P<0.05, OR=1.054), every 1 increase in age increases the probability of severe illness by 0.054 times. PT can significantly affect the severity of symptoms (P<0.05, OR=1.245), for every 1 increase in PT, the probability of severe illness increases by 0.245 times.

Conclusion

COVID-19 patients with advanced age, basic cardiovascular diseases, prolonged PT and elevated D-dimer are all high risk factors for severe illness and important factors for predicting the prognosis of critically ill patients.

表1 各组临床基线特征对比
临床资料 普通(n=190) 重型(n=107) 危重型(n=59) 检验值 P 未重症化(n=72) 重症化(n=22) 检验值 P
年龄(岁) 62(53~70) 70(62~78) 78(67~87) 61.115 0.000 74(64.5~83.75) 85(76.5~90) -2.636 0.008
住院时间(d) 20(14~23) 17(12~24) 15(12~19) 9.015 0.011 16(11~23) 16(14~22.75) -0.407 0.684
PT(s) 11.8(11~12.5) 12.4(11.6~13.5) 13.1(12.2~14.3) 59.783 0.000 12.95(12~13.98) 14.25(12.85~15.45) -2.743 0.006
INR 1.09(1.02~1.16) 1.15(1.08~1.27) 1.21(1.14~1.32) 60.091 0.000 1.21(1.12~1.32) 1.31(1.19~1.43) -2.39 0.017
Fib-C(mg/dl) 273(239.5~328.25) 323(257~396) 336(294~430) 24.091 0.000 338.68±104.26 376.68±111.9 -1.471 0.145
APTT(s) 31.5(29.7~34.2) 31.3(28.9~33.2) 30.9(27.7~33.8) 3.382 0.184 30.6±4.9 31.88±5.76 -1.029 0.306
TT(s) 15.4(14.4~16.2) 14.9(14.2~16.1) 15.4(14.2~16.7) 2.046 0.36 14.95(14.03~15.98) 16.35(13.98~17) -1.277 0.201
D-dimer(ng/ml) 93.5(56.5~225.25) 464(193~1 383) 709(475~2 536) 144.32 0.000 1 430.5(667.25~2 797.5) 1 129(730~2 743.5) -0.152 0.879
FDP(ng/ml) 1.49(1.06~2.28) 4.13(2.48~11.47) 7.78(4.31~19.33) 146.384 0.000 13.26(6.39~21.31) 11.78(7.66~24.02) -0.045 0.964
PLT(×109/L) 225(180.25~269) 205(164~272) 202(158~242) 7.542 0.023 202.5(155~246.5) 214(161.5~319.5) -1.299 0.194
PDW(%) 11.4(10.4~12.8) 11.5(10.4~13) 12.1(11~13.6) 6.994 0.03 12.1(10.63~13.68) 11.35(10.48~12.3) -1.849 0.064
MPV(fL) 10.3(9.7~11) 10.5(10~11.1) 10.8(10.3~11.5) 19.308 0.000 10.8(10.1~11.6) 10.55(10.18~11.43) -1.05 0.294
P-LCR(%) 26.7(22.18~32.48) 28.1(24.2~32.7) 30.1(27.1~34.7) 13.078 0.001 31.29±8.1 27.83±5.18 2.373 0.021
高血压 67(35.3%) 55(51.4%) 27(45.8%) 7.770 0.021 39(54.2%) 12(54.5%) 0.001 0.975
糖尿病 30(15.8%) 30(28%) 11(18.6%) 6.506 0.039 17(23.6%) 4(18.2%) - 0.772
心血管疾病 21(11.1%) 31(29%) 30(50.8%) 43.259 0.000 33(45.8%) 13(59.1%) 1.185 0.276
肺基础疾病 10(5.3%) 15(14%) 11(18.6%) 11.436 0.003 10(13.9%) 5(22.7%) - 0.331
表2 COVID-19患者出现重症的危险因素
表3 重症化的独立影响因素
1
国家卫生健康委员办公厅. 国家中医药管理局办公室关于印发新型冠状病毒肺炎诊疗方案(试行第六版)的通知国卫办疾控函〔2020〕204号. 2020-03-07
2
Vincent J. COVID-19: it′s all about sepsis[J]. Future Microbiology, 2021, 16(3): 131-133.
3
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19[J]. Lancet, 2020, 395(10234): 1417-1418.
4
Pons S, Fodil S, Azoulay E, et al. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection[J]. Critical Care, 2020, 24(1): 353.
5
Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: A prospective cohort study[J]. Ann Intern Med, 2020, 173(4): 268-277.
6
Dolhnikff M, Duarte Neto AN, Almeida Monteiro RA, et al. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19[J]. J Thromb Haemost, 2020, 18(6): 1517-1519.
7
Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. J Thromb Haemost, 2020, 18(4): 844-847.
8
Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19[J]. J Thromb Haemost, 2020, 18(5): 1023-1026.
9
Wu Z, Mcgoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention[J]. JAMA, 2020, 323(13): 1239-1242.
10
Puelles VG, Lutgehetmann M, Lindenmeyer MT, et al. Multiorgan and Renal Tropism of SARS-CoV-2[J]. N Engl J Med, 2020, 383(6): 590-592.
11
Roumenina LT, Rayes J, Frimat M, et al. Endothelial cells: source, barrier, and target of defensive mediators[J]. Immunolog Rev, 2016, 274(1): 307-329.
12
Daniel AE, van Buul JD. Endothelial junction regulation: A prerequisite for leukocytes crossing the vessel wall[J]. J Inn Immun, 2013, 5(4): 324-335.
13
Teijaro JR, Walsh KB, Cahalan S, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection[J]. Cell, 2011, 146(6): 980-991.
14
Paz OM, Riquelme JA, Garcia L, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease[J]. Nat Rev Cardiol, 2020, 17(2): 116-129.
15
Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function[J]. Nature, 2002, 417(6891): 822-828.
16
Shaw RJ, Bradbury C, Abrams ST, et al. COVID-19 and immunothrombosis:emerging understanding and clinical management[J]. Br J Haematol, 2021, 194(3): 518-529.
17
Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19[J]. Nat Rev Nephrol, 2021, 17(1): 46-64.
18
Lin GL, Mcginley JP, Drysdale SB, et al. Epidemiology and Immune Pathogenesis of Viral Sepsis[J]. Front Immunol, 2018, 9: 2147.
19
Mcgonagle D, O′Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia[J]. Lancet Rheumatol, 2020, 2(7): e437-e445.
20
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8(4): 420-422.
21
Bachler M, Bosch J, Sturael DP, et al. Impaired fibrinolysis in critically ill COVID-19 patients[J]. Br J Anaesth, 2021, 126(3): 590-598.
22
Eegelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity[J]. Nature Rev Immunol, 2013, 13(1): 34-45.
23
Llitjos JF, Leclerc M, Chochois C, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients[J]. J Thromb Haemost, 2020, 18(7): 1743-1746.
24
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223): 497-506.
25
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020, 323(11): 1061-1069.
26
Azevedo RB, Botelho BG, Hollanda J, et al. Covid-19 and the cardiovascular system: a comprehensive review[J]. J Hum Hypertens, 2021, 35(1): 4-11.
27
Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy[J]. J Thromb Haemost, 2020, 18(5): 1094-1099.
28
Buijsers B, Yanginlar C, Maciej-Hulme ML, et al. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients[J]. EBioMed, 2020, 59: 102969.
29
Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects?[J]. Thromb Haemost, 2017, 117(3): 437-444.
[1] 李振华, 解宝江, 易为, 李丽, 卫雅娴, 周明书, 伊诺. 82例孕产妇对新型冠状病毒肺炎疫情防控认知的心理干预及常态化疫情防控应对要点[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(03): 173-179.
[2] 陶银花, 张红杰, 王亚岚, 陈莲, 张珺. 间歇式气压治疗预防肺癌化疗下肢深静脉血栓的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 605-608.
[3] 尹炳驿, 张楚楚, 刘艺, 林洪生. 益气清金汤加味治疗晚期非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 462-465.
[4] 边亚礼, 杨艳双, 何新霞. 清咳平喘颗粒联合左氧氟沙星对社区获得性肺炎的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 254-256.
[5] 伍细蓉, 徐立文, 陈亚琼. 基于LPR和FARI构建肝衰竭患者生存预后模型[J]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 675-681.
[6] 刘彪, 巍山, 关永胜. 基于Rotterdam CT评分及凝血功能指标的创伤性颅脑损伤预后预测模型的构建与验证[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 22-27.
[7] 杜洁, 王玲, 龚志成, 张丽娜. 基于危重症患者病理生理特点的合理用药探讨[J]. 中华重症医学电子杂志, 2024, 10(01): 6-15.
[8] 刘付蓉, 翁利, 杜斌. 2020年至2022年中国重症医学临床研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 48-53.
[9] 李世明, 黄蔚, 刘玲. HMGB1介导脓毒症相关凝血功能障碍的作用机制及其治疗进展[J]. 中华重症医学电子杂志, 2023, 09(03): 269-273.
[10] 李雪珠, 谢剑锋, 李晓青, 夏泽燕, 鲁玲, 顾晓霞, 马绍磊, 黄英姿. 循环式筛查与五色区域分类模式在方舱医院管理中的应用[J]. 中华重症医学电子杂志, 2023, 09(03): 316-320.
[11] 朱琴琴, 慈娟娟, 崔璐, 许海蓉, 李宇新, 丁炎波. 凝血功能、血脂、C反应蛋白及中性粒细胞/淋巴细胞水平对克罗恩病活动性评估及临床诊断的价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 35-40.
[12] 刘广杰, 王光林, 樊少青, 王贵英. 局部新型冠状病毒感染疫情下肿瘤患者负性情绪和行为的诱因及应对措施[J]. 中华临床医师杂志(电子版), 2023, 17(01): 93-96.
[13] 葛静萍, 尹媛媛, 李燕. 梯度压力袜联合间歇充气加压在老年新型冠状病毒肺炎患者预防下肢深静脉血栓形成中的应用[J]. 中华介入放射学电子杂志, 2024, 12(01): 70-74.
[14] 刘敏, 彭才静, 王金能. 重庆市新型冠状病毒肺炎疫情前后儿童支气管肺炎痰培养结果分析[J]. 中华诊断学电子杂志, 2023, 11(02): 97-103.
[15] 黄立锋. 重症患者的早期识别[J]. 中华卫生应急电子杂志, 2024, 10(02): 128-128.
阅读次数
全文


摘要