切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (03) : 316 -322. doi: 10.3877/cma.j.issn.1674-6902.2022.03.006

论著

PM2.5激活HIF-1α-NF-κB/VEGF通路对肺损伤的影响
林红卫1, 李王平1, 金发光1,()   
  1. 1. 710038 西安,中国人民解放军空军军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2021-12-19 出版日期:2022-06-25
  • 通信作者: 金发光
  • 基金资助:
    陕西省重点研发计划(2018ZDCXL-SF-02-03-02)

PM2.5 aggravates lung injury by activating HIF-1α-NF-κB/VEGF pathway

Hongwei Lin1, Wangping Li1, Faguang Jin1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Air Force Medical University, Xi′an 710038, China
  • Received:2021-12-19 Published:2022-06-25
  • Corresponding author: Faguang Jin
引用本文:

林红卫, 李王平, 金发光. PM2.5激活HIF-1α-NF-κB/VEGF通路对肺损伤的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 316-322.

Hongwei Lin, Wangping Li, Faguang Jin. PM2.5 aggravates lung injury by activating HIF-1α-NF-κB/VEGF pathway[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(03): 316-322.

目的

分析HIF-1α在PM2.5暴露致肺损伤中的影响。

方法

构建经气管滴注PM2.5悬液诱导大鼠肺损伤的动物模型,通过蛋白质免疫印迹、病理切片、ROS与TUNEL染色和ELISA等方法,分析不同PM2.5暴露剂量下HIF-1α表达和肺损伤情况;构建抑制HIF-1α表达的动物模型,通过蛋白质免疫印迹、免疫荧光和ELISA等方法探讨HIF-1α在PM2.5暴露致肺损伤中的作用机制。

结果

PM2.5暴露造成肺组织病理性损伤,提高肺组织ROS水平、细胞凋亡率和湿干比,促进支气管肺泡灌洗液中各类炎症细胞计数和炎症因子IL-6、TNF-α水平增高,激活肺组织HIF-1α的蛋白表达,且以上效应与PM2.5暴露浓度相关;抑制HIF-1α可降低NF-κB表达,降低支气管肺泡灌洗液中炎症因子水平,改善肺组织炎症;抑制HIF-1α可降低VEGF表达,降低支气管肺泡灌洗液中白蛋白水平和肺组织湿干比,改善肺组织水肿。

结论

PM2.5通过激活"HIF-1α-NF-κB-炎症细胞(AMs、NEUs)/炎症因子(IL-6、TNF-α)-肺组织炎症反应"和"HIF-1α-VEGF-肺血管通透性-肺水肿"两条路径加重肺组织炎症反应、肺血管通透性和肺水肿,导致肺损伤。

Objective

To explore the role of HIF-1α in PM2.5-induced lung injury.

Methods

The rat model of lung injury induced by tracheal aerosol PM2.5 suspension was established, HIF-1α expression and lung injury under different PM2.5 exposure doses were investigated by western blot, pathological section, ROS staining, TUNEL staining and ELISA. An animal model was constructed to inhibit HIF-1α expression, and the mechanism of HIF-1α in lung injury induced by PM2.5 exposure was investigated by western blot, immunofluorescence and ELISA.

Results

PM2.5 exposure causes pathological damage, increases ROS level, apoptosis rate and wet-dry ratio of lung tissue, promotes the count of various inflammatory cells and the levels of inflammatory factors IL-6 and TNF-α in BALF, and activates the protein expression of HIF-1α in lung tissue, the above effects are related to PM2.5 exposure concentration. Inhibition of HIF-1α can reduce lung inflammation by decreasing NF-κB expression in lung tissue and the level of inflammatory factors in BALF. Inhibition of HIF-1α can reduce lung tissue edema by decreasing VEGF expression in lung tissue, albumin level in BALF and lung tissue wet-dry ratio.

Conclusion

PM2.5 aggravates lung tissue inflammation, pulmonary vascular permeability and pulmonary edema by activating two pathways: HIF-1α-NF-κB-inflammatory cells(AMs, NEUs)/inflammatory factors(IL-6, TNF-α)-lung tissue inflammation and HIF-1α-VEGF-pulmonary vascular permeability-pulmonary edema.

图1 不同处理组肺组织HIF-1α表达情况。注:**,P<0.01
图2 A:不同处理组肺组织病理切片,注:a:PBS组;b:PM2.5(0.375 mg/kg)组;c:PM2.5(1.5 mg/kg)组;d:PM2.5(6 mg/kg)组;e:PM2.5(24 mg/kg)组;蓝色箭头:水肿;绿色箭头:肺泡壁增厚;黄色箭头:炎症细胞。B、C:不同处理组肺组织ROS、TUNEL染色,注:a:PBS组;b:PM2.5(1.5 mg/kg)组;c:PM2.5(6 mg/kg)组;d:PM2.5(24 mg/kg)组。注:*,P<0.05,**,P<0.01
图3 A:不同处理组BALF中IL-6、TNF-α水平。B:不同处理组BALF中白细胞分类计数。C:不同处理组肺组织湿干重比。注:*,P<0.05,**,P<0.01
图5 A:不同处理组HIF-1α和P-p65免疫荧光染色及相对荧光强度,注:蓝色:DAPI,红色:HIF-1α,粉色:P-p65。B:不同处理组BALF中IL-6、TNF-α水平。注:*,P<0.05,**,P<0.01,n.s.表示无统计学差异
图4 不同处理组肺组织HIF-1α表达情况。注:**,P<0.01
图6 A:不同处理组HIF-1α和VEGF免疫荧光染色及相对荧光强度,注:蓝色:DAPI,红色:HIF-1α,绿色:VEGF。B:不同处理组BALF中白蛋白水平。C:不同处理组肺组织湿干重比。注:*,P<0.05,**,P<0.01,n.s.表示无统计学差异
1
Balmes JR. Household air pollution from domestic combustion of solid fuels and health[J]. J Allergy Clin Immunol, 2019143(6): 1979-1987.
2
韩璐瑶,吴克坚,高永恒,等. 不同大气污染物对呼吸系统疾病门诊量的影响[J/CD]. 中华肺部疾病杂志(电子版), 202013(2): 229-235.
3
韩璐瑶,金发光. 西安市大气污染物影响人群健康的现状[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(6): 783-785.
4
丁世彬,高丽云,李玉春,等. 慢性PM2.5暴露对C57BL/6J小鼠肺组织炎症和NLRP3炎性小体活性的影响[J]. 中国实验动物学报2019, 27(4): 444-449.
5
Zhang Y, Wang S, Zhu J, et al. Effect of atmospheric PM2.5 on expression levels of NF-kappaB genes and inflammatory cytokines regulated by NF-kappaB in human macrophage[J]. Inflammation, 2018, 41(3): 784-794.
6
Yang B, Guo J, Xiao C. Effect of PM2.5 environmental pollution on rat lung[J]. Environ Sci Pollut Res Int, 2018, 25(36): 36136-36146.
7
Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12(12): 5447-5454.
8
Liu Z, Zhang B, Wang XB, et al. Hypertonicity contributes to seawater aspiration-induced lung injury: Role of hypoxia-inducible factor 1alpha[J]. Exp Lung Res, 2015, 41(6): 301-315.
9
Suresh MV, Ramakrishnan SK, Thomas B, et al. Activation of hypoxia-inducible factor-1alpha in type 2 alveolar epithelial cell is a major driver of acute inflammation following lung contusion[J]. Crit Care Med, 2014, 42(10): e642-e653.
10
Sun HD, Liu YJ, Chen J, et al. The pivotal role of HIF-1alpha in lung inflammatory injury induced by septic mesenteric lymph[J]. Biomed Pharmacother, 2017, 91: 476-484.
11
Zhao X, Jin Y, Li H, et al. Hypoxia-inducible factor 1 alpha contributes to pulmonary vascular dysfunction in lung ischemia-reperfusion injury[J]. Int J Clin Exp Pathol, 20147(6): 3081-3088.
12
Wu G, Xu G, Chen DW, et al. Hypoxia exacerbates inflammatory acute lung injury via the toll-like receptor 4 signaling pathway[J]. Front Immunol, 2018, 9: 1667.
13
Liang S, Ning R, Zhang J, et al. MiR-939-5p suppresses PM2.5-induced endothelial injury via targeting HIF-1alpha in HAECs[J]. Nanotoxicology, 2021, 15(5): 706-720.
14
Dai J, Sun C, Yao Z, et al. Exposure to concentrated ambient fine particulate matter disrupts vascular endothelial cell barrier function via the IL-6/HIF-1alpha signaling pathway[J]. FEBS Open Bio, 2016, 6(7): 720-728.
15
Gao Y, Sun J, Dong C, et al. Extracellular vesicles derived from adipose mesenchymal stem cells alleviate PM2.5-induced lung injury and pulmonary fibrosis[J]. Med Sci Monit, 2020, 26: e922782.
16
Li R, Kou X, Xie L, et al. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-jun in lungs of rats[J]. Environ Sci Pollut Res Int, 2015, 22(24): 20167-20176.
17
Lee K, Zhang H, Qian D Z, et al. Acriflavine inhibits HIF-1 dimerization,tumor growth, and vascularization[J]. Proc Natl Acad Sci USA, 2009, 106(42): 17910-17915.
18
Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension[J]. Proc Natl Acad Sci U S A, 1995, 92(12): 5510-5514.
19
Wang GL, Semenza GL. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia[J]. J Biol Chem, 1993, 268(29): 21513-21518.
20
Jiang H, Huang Y, Xu H, et al. Inhibition of hypoxia inducible factor-1alpha ameliorates lung injury induced by trauma and hemorrhagic shock in rats[J]. Acta Pharmacol Sin, 2012, 33(5): 635-643.
21
Rius J, Guma M, Schachtrup C, et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α[J]. Nature, 2008, 453(7196): 807-811.
22
Jung Y, Isaacs JS, Lee S, et al. IL-1β mediated up-regulation of HIF-lα via an NFkB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis[J]. FASEB J, 2003, 17(14): 1-22.
23
Diamant G, Dikstein R. Transcriptional control by NF-kappaB: elongation in focus[J]. Biochim Biophys Acta, 2013, 1829(9): 937-945.
24
Barboric M, Nissen RM, Kanazawa S, et al. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase Ⅱ[J]. Mol Cell, 2001, 8(2): 327-337.
25
Tan W, Jia W, Sun V, et al. Topical rapamycin suppresses the angiogenesis pathways induced by pulsed dye laser: molecular mechanisms of inhibition of regeneration and revascularization of photocoagulated cutaneous blood vessels[J]. Lasers Surg Med, 2012, 44(10): 796-804.
26
陈 觅,杨 扬,李欣宁,等. 血管内皮生长因子信号系统与急性肺损伤研究进展[J]. 国际麻醉学与复苏杂志2021, 42(6): 668-672.
27
Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target[J]. Mol Cancer Ther, 2004, 3(5): 647-654.
[1] 沈纵, 魏晨如, 朱邦晖, 包郁露, 伍国胜, 孙瑜. 间充质干细胞治疗吸入性损伤的动物实验研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 180-183.
[2] 王博, 白子锐, 李坚. 近红外二区新型血管内皮生长因子受体靶向探针在结直肠癌小鼠模型中的应用[J]. 中华普通外科学文献(电子版), 2023, 17(03): 173-177.
[3] 熊欢庆, 李玉娟, 陈键, 刘刚, 李志超, 金发光. 丹参酮IIA及苦参碱组方对脂多糖致小鼠急性肺损伤的协同保护作用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 455-459.
[4] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[5] 董红雪, 沈玥, 鲁静, 帅维正, 高苗莉, 陶莎. 俯卧位机械通气在慢性阻塞性肺疾病急性加重期的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 263-265.
[6] 李埝, 赵建军, 张建勇, 赵睿桢. hAMSCs调控MAPK信号通路对急性肺损伤AQP1的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 156-163.
[7] 王玉芹, 刘冠群, 曲福君. IDH1和VEGF对非小细胞肺癌的诊断意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 847-849.
[8] 陈光涛, 吴立强, 庄雄. 高血压肾损伤患者外周血单个核细胞PPARγ和NF-κB的mRNA表达及其与心血管重构的相关性[J]. 中华肾病研究电子杂志, 2022, 11(05): 270-275.
[9] 崔宏宇, 杨一佺, 郭黎霞, 吕爱国, 张志宏, 张新, 杨艳萍, 申然, 连丽英, 曹志刚, 王立芳, 胡建华, 范肃洁. 改良Ahmed青光眼引流阀植入术治疗闭角期新生血管性青光眼疗效的临床研究[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 76-81.
[10] 常炜, 刘玲. 呼吸驱动及呼吸努力床旁评估的研究进展[J]. 中华重症医学电子杂志, 2023, 09(01): 25-29.
[11] 阳莹, 崔亚梅, 邵强, 赵宁, 陶文强, 陈家泉, 徐泽尧, 钱克俭, 刘芬. 线粒体自噬对肺泡巨噬细胞焦亡的调控作用及其机制[J]. 中华重症医学电子杂志, 2023, 09(01): 69-77.
[12] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[13] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
[14] 颜凡辉, 赵明俐, 李颖, 郭方明, 詹景冬, 赵英杰, 王阳, 张艳芬, 赵笑梅. 急性冠脉综合征患者冠脉血管病变程度与血清TNF-α、VEGF水平相关性研究[J]. 中华诊断学电子杂志, 2023, 11(03): 158-164.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要