切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (01) : 180 -183. doi: 10.3877/cma.j.issn.1674-6902.2025.01.034

综述

坏死性凋亡在肺损伤中的作用机制
曹柳兆1, 滕为云1, 徐兴祥1,   
  1. 1. 225001 扬州,江苏省苏北人民医院呼吸与危重症医学科
  • 收稿日期:2024-10-13 出版日期:2025-02-25
  • 通信作者: 徐兴祥
  • 基金资助:
    江苏省苏北人民医院科研项目(1.SBQN22010; 2.SBHL22004)

Mechanism of necrotic apoptosis in lung injury

Liuzhao Cao, Weiyun Teng, Xingxiang Xu   

  • Received:2024-10-13 Published:2025-02-25
  • Corresponding author: Xingxiang Xu
引用本文:

曹柳兆, 滕为云, 徐兴祥. 坏死性凋亡在肺损伤中的作用机制[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 180-183.

Liuzhao Cao, Weiyun Teng, Xingxiang Xu. Mechanism of necrotic apoptosis in lung injury[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(01): 180-183.

细胞程序性死亡(programmed cell death)是急性肺损伤发展的一个重要驱动因素。 坏死性凋亡(necrotic death)是一种在固有免疫中重要的免疫源性细胞程序性死亡,多种原因导致的肺损伤的发生发展中扮演重要角色。 坏死性凋亡的特点是溶解性细胞死亡和随之而来的内源性炎症介质的细胞外释放,根据不同的损伤类型,对宿主既可能有益也可能有害。 通过体外研究、动物模型和临床研究等证据,进一步分析在不同类型肺损伤中,坏死性凋亡的潜在作用。

1
许发琼,贺斌峰,黄朝旺,等.非编码RNA 调控巨噬细胞炎症反应在ALI/ARDS 中的研究进展[J/CD].中华肺部疾病杂志(电子版),2021,14(5): 677-680.
2
Qi X,Luo Y,Xiao M,et al.Mechanisms of alveolar type 2 epithelial cell death during acute lung injury[J].Stem Cells,2023,41(12): 1113-1132.
3
Feng Y,Li M,Yangzhong X,et al.Pyroptosis in inflammationrelated respiratory disease[J].J Physiol Biochem,2022,78(4):721-737.
4
Khoury MK,Gupta K,Franco SR,et al.Necroptosis in the pathophysiology of disease[J].Am J Pathol,2020,190(2): 272-285.
5
Pasparakis M,Vandenabeele P.Necroptosis and its role in inflammation[J].Nature,2015,517(7534): 311-320.
6
Zhou Y,Wu R,Wang X,et al.Roles of necroptosis in alcoholic liver disease and hepatic pathogenesis[J].Cell Prolif,2022,55(3): e13193.
7
Zhou M,He J,Shi Y,et al.ABIN3 negatively regulates necroptosisinduced intestinal inflammation through recruiting A20 and restricting the ubiquitination of RIPK3 in inflammatory bowel disease[J].J Crohns Colitis,2021,15(1): 99-114.
8
Liang QQ,Shi ZJ,Yuan T,et al.Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers protection against acute pancreatitis in mice[J].Int Immunopharmacol,2023,117: 109974.
9
Yang HH,Jiang HL,Tao JH,et al.Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharideinduced acute lung injury[J].Exp Mol Med,2022,54(11):2077-2091.
10
Du J,Liu Y,Lan G,et al.PTRF-IL33-ZBP1 signaling mediating macrophage necroptosis contributes to HDM-induced airway inflammation[J].Cell Death Dis,2023,14(7): 432.
11
Zhong WJ,Zhang J,Duan JX,et al.TREM-1 triggers necroptosis of macrophages through mTOR-dependent mitochondrial fission during acute lung injury[J].J Transl Med,2023,21(1): 179.
12
Korde A,Haslip M,Pednekar P,et al.MicroRNA-1 protects the endothelium in acute lung injury[J].JCI Insight,2023,8(18):e164816.
13
Martinez-Osorio V,Abdelwahab Y,Ros U.The many faces of MLKL,the executor of necroptosis[J].Int J Mol Sci,2023,24(12):10108.
14
Zhan C,Huang M,Yang X,et al.MLKL:Functions beyond serving as the Executioner of Necroptosis[J].Theranostics,2021,11(10):4759-4769.
15
Chen W,Gullett JM,Tweedell RE,et al.Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease[J].Eur J Immunol,2023,53(11): e2250235.
16
Rickard JA,O′Donnell JA,Evans JM,et al.RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis[J].Cell,2014,157(5): 1175-1188.
17
Grootjans S,Vanden Berghe T,Vandenabeele P.Initiation and execution mechanisms of necroptosis: an overview[J].Cell Death Differ,2017,24(7): 1184-1195.
18
Ketelut-Carneiro N,Fitzgerald KA.Apoptosis,pyroptosis,and necroptosis-Oh My! The many ways a cell can die[J].J Mol Biol,2022,434(4): 167378.
19
Kitur K,Wachtel S,Brown A,et al.Necroptosis promotes staphylococcus aureus clearance by inhibiting excessive inflammatory signaling[J].Cell Rep,2016,16(8): 2219-2230.
20
Huang D,Chen P,Huang G,et al.Salt-inducible kinases inhibitor HG-9-91-01 targets RIPK3 kinase activity to alleviate necroptosismediated inflammatory injury[J].Cell Death Dis,2022,13(2):188.
21
Jia N,Li G,Wang X,et al.Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways[J].Commun Biol,2022,5(1): 813.
22
Eng VV,Wemyss MA,Pearson JS.The diverse roles of RIP kinases in host-pathogen interactions[J].Semin Cell Dev Biol,2021,109:125-143.
23
Li H,Guan J,Chen J,et al.Necroptosis signaling and NLRP3 inflammasome cross-talking in epithelium facilitate Pseudomonas aeruginosa mediated lung injury[J].Biochim Biophys Acta Mol Basis Dis,2023,1869(3): 166613.
24
Lyons JD,Mandal P,Otani S,et al.The RIPK3 scaffold regulates lung inflammation during pseudomonas aeruginosa pneumonia[J].Am J Respir Cell Mol Biol,2023,68(2): 150-160.
25
Gonzalez-Juarbe N,Gilley RP,Hinojosa CA,et al.Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia[J].PLoS Pathog,2015,11(12): e1005337.
26
Zhou Y,Niu C,Ma B,et al.Inhibiting PSMalpha-induced neutrophil necroptosis protects mice with MRSA pneumonia by blocking the agr system[J].Cell Death Dis,2018,9(3): 362.
27
Thapa RJ,Ingram JP,Ragan KB,et al.DAI senses influenza a virus genomic RNA and activates RIPK3-dependent cell death[J].Cell Host Microbe,2016,20(5): 674-681.
28
Balachandran S,Mocarski ES.Viral Z-RNA triggers ZBP1-dependent cell death[J].Curr Opin Virol,2021,51: 134-140.
29
Ferreira AC,Sacramento CQ,Pereira-Dutra FS,et al.Severe influenza infection is associated with inflammatory programmed cell death in infected macrophages[J].Front Cell Infect Microbiol,2023,13:1067285.
30
Zhang T,Yin C,Boyd DF,et al.Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J].Cell,2020,180(6): 1115-1129 e1113.
31
Riegler AN,Benson P,Long K,et al.Differential activation of programmed cell death in patients with severe SARS-CoV-2 infection[J].Cell Death Discov,2023,9(1): 420.
32
Basavaraju S,Mishra S,Jindal R,et al.Emerging role of ZBP1 in Z-RNA sensing,influenza virus-induced cell death,and pulmonary inflammation[J].mBio,2022,13(3): e0040122.
33
Cao L,Mu W.Necrostatin-1 and necroptosis inhibition:Pathophysiology and therapeutic implications [J].Pharmacol Res,2021,163:105297.
34
Singer M,Deutschman CS,Seymour CW,et al.The third international consensus definitions for sepsis and septic shock (Sepsis-3)[J].JAMA,2016,315(8): 801-810.
35
Wang L,Wang T,Li H,et al.Receptor interacting protein 3-mediatednecroptosispromoteslipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice[J].PLoS One,2016,11(5): e0155723.
36
Bolognese AC,Yang WL,Hansen LW,et al.Inhibition of necroptosis attenuates lung injury and improves survival in neonatal sepsis[J].Surgery,2018: S0039-6060(18)30096-5.
37
Reilly B,Tan C,Murao A,et al.Necroptosis-mediated eCIRP release in sepsis[J].J Inflamm Res,2022,15: 4047-4059.
38
Gong T,Zhang X,Peng Z,et al.Macrophage-derived exosomal aminopeptidase N aggravates sepsis-induced acute lung injury by regulating necroptosis of lung epithelial cell[J].Commun Biol,2022,5(1): 543.
39
Ma KC,Schenck EJ,Siempos II,et al.Circulating RIPK3 levels are associated with mortality and organ failure during critical illness[J].JCI Insight,2018,3(13): e99692.
40
Siempos II,Ma KC,Imamura M,et al.RIPK3 mediates pathogenesis of experimental ventilator-induced lung injury [J].JCI Insight,2018,3(9): e97102.
41
Li W,Terada Y,Tyurina YY,et al.Necroptosis triggers spatially restricted neutrophil-mediated vascular damage during lung ischemia reperfusion injury[J].Proc Natl Acad Sci U S A,2022,119(10):e2111537119.
42
Dong L,Liang F,Lou Z,et al.Necrostatin-1 alleviates lung ischemiareperfusion injury via inhibiting necroptosis and apoptosis of lung epithelial cells[J].Cells,2022,11(19): 3139.
43
Faust H,Lam LM,Hotz MJ,et al.RAGE interacts with the necroptotic protein RIPK3 and mediates transfusion-induced danger signal release[J].Vox Sang,2020,115(8): 729-734.
44
Qing DY,Conegliano D,Shashaty MG,et al.Red blood cells induce necroptosis of lung endothelial cells and increase susceptibility to lung inflammation[J].Am J Respir Crit Care Med,2014,190(11): 1243-1254.
45
Chen H,Xia Z,Qing B,et al.Analysis of necroptosis-related prognostic genes and immune infiltration in idiopathic pulmonary fibrosis[J].Front Immunol,2023,14: 1119139.
46
吴沛玲,娄月妍,张洪艳,等.线粒体相关基因在特发性肺纤维化中的分析[J/CD].中华肺部疾病杂志(电子版),2024,17(2): 178-184.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[3] 贾艳慧, 原毅轩, 官浩, 胡大海. 清除衰老细胞在减轻脓毒症小鼠急性肺损伤中的作用机制探讨[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 55-60.
[4] 雷子威, 凌萍, 沈纵, 魏晨如, 朱邦晖, 伍国胜, 孙瑜. 类器官肺损伤疾病模型构建及应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 531-535.
[5] 廖泽楷, 梁爱琳, 龚启梅. 根尖周病中程序性细胞死亡的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(03): 150-155.
[6] 宗晓龙, 林源希, 张天翼, 刘雅茹, 李端阳, 李真玉. 紫檀芪通过抑制炎症反应和NETs 形成对减轻脓毒症小鼠急性肺损伤的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 29-35.
[7] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[8] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[9] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[10] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[11] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[12] 刘婷, 杨少康, 陈亿霏, 刘悦, 潘纯. 气道闭合的监测在机械通气中的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 394-398.
[13] 孙晓桐, 何怀武. 非对称性肺损伤的诊疗进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 287-291.
[14] 刘兴庆, 孟祥洋, 李森, 王海燕, 谢友红, 杨策. 胆碱能α7 烟碱型乙酰胆碱受体通路对高原冲击性脑损伤后肺脏功能的影响研究进展[J/OL]. 中华诊断学电子杂志, 2025, 13(01): 65-70.
[15] 刘建, 王文珠, 王倩. 老年髋部骨折术后肺损伤现状调查分析及影响因素研究[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 260-264.
阅读次数
全文


摘要