切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (03) : 447 -451. doi: 10.3877/cma.j.issn.1674-6902.2025.03.019

论著

机械通气患者呼吸机相关性肺炎的风险分析
许丽妹1, 吴海燕1, 林海丽1, 吉顺妮1, 陈春汝1, 符娇娇1, 陈忠仁2, 吴小妹1,()   
  1. 1. 570208 海口,海口市人民医院神经内科
    2. 570208 海口,海口市人民医院呼吸与危重症医学科
  • 收稿日期:2025-02-27 出版日期:2025-06-25
  • 通信作者: 吴小妹

Risk analysis of ventilator-associated pneumonia in patients with mechanical ventilation

Limei Xu1, Haiyan Wu1, Haili Lin1, Shunni Ji1, Chunru Chen1, Jiaojiao Fu1, Zhongren Chen2, Xiaomei Wu1,()   

  1. 1. Department of Neurology,Haikou People's Hospital,Haikou 570208,China
    2. Department of Respiratory and Critical Care Medicine,Haikou People's Hospital,Haikou 570208,China
  • Received:2025-02-27 Published:2025-06-25
  • Corresponding author: Xiaomei Wu
引用本文:

许丽妹, 吴海燕, 林海丽, 吉顺妮, 陈春汝, 符娇娇, 陈忠仁, 吴小妹. 机械通气患者呼吸机相关性肺炎的风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 447-451.

Limei Xu, Haiyan Wu, Haili Lin, Shunni Ji, Chunru Chen, Jiaojiao Fu, Zhongren Chen, Xiaomei Wu. Risk analysis of ventilator-associated pneumonia in patients with mechanical ventilation[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(03): 447-451.

目的

基于可解释机器学习模型分析机械通气患者呼吸机相关性肺炎(ventilatorassociated pneumonia,VAP)风险。

方法

选取2022 年1 月至2024 年12 月我院收治的机械通气患者77 例。 发生VAP 19 例分为观察组和未发生VAP 58 例分为对照组,收集临床资料,采用LASSO 回归分析筛选与VAP 相关特征,运用逻辑回归(logistic regression,LR)、支持向量机(support vector machine,SVM)、多层感知器(multi-layer perceptron,MLP)及极端梯度提升(eXtreme Gradient Boosting,xGBoost)4 种机器学习(machine learning,ML)算法构建预测,采用SHAP 方法分析可解释性。

结果

单因素分析显示,观察组急性生理学及慢性健康状况评分系统(acute physiology and chronic health evaluation Ⅱ,APACHE Ⅱ)(21.53±2.50)分、机械通气时间(10.37±3.30)d 高于对照组APACHE Ⅱ(18.59±2.80)分、机械通气时间(8.38±2.55)d,观察组格拉斯哥评分(10.79±2.07)分、白蛋白水平(30.08±3.79)g/L 低于对照组格拉斯哥评分(12.14±1.94)分、白蛋白水平(34.22±5.20)g/L,观察组慢性阻塞性肺疾病、糖尿病、使用镇静剂、抗生素种类与对照组差异有统计学意义(P<0.05)。 LASSO 回归分析显示,APACHE Ⅱ评分、机械通气时间、白蛋白是机械通气患者发生VAP 的风险因素。 基于风险因素构建4 个ML,xGBoost 曲线下面积(area under the curve,AUC)为0.882,准确性为81.30%,敏感度为84.00%,特异度为82.00%。SHAP 结果显示,VAP 风险贡献度前4 的特征分别为APACHE Ⅱ评分、机械通气时间、白蛋白水平。

结论

xGBoost 敏感度和特异度高,作为一种辅助诊断工具快速、准确判断机械通气患者发生VAP 风险,为临床决策提供参考。

Objective

To analyze the risk of ventilator-associated pneumonia (VAP) in patients with mechanical ventilation based on an interpretable machine learning model.

Methods

All of 77 patients with mechanical ventilation in our hospital from January 2022 to December 2024 were selected. 19 cases with VAP were divided into the observation group and 58 cases without VAP were divided into the control group. Clinical data were collected,and the features related to VAP were screened by LASSO regression analysis. Logistic regression (LR) and support vector machine were used. SVM,multi-layer perceptron (MLP) and eXtreme Gradient Boosting (xGBoost) were four machine learning(ML) algorithms to construct the prediction model,and SHAP was used to analyze the interpretability of the model.

Results

Univariate analysis showed that acute physiology and chronic health evaluation Ⅱ,APACHEⅡ) (21.53±2.50) minutes and mechanical ventilation time (10.37±3.30) d were higher than those of control group (18.59±2.80) minutes and mechanical ventilation time (8.38±2.55) d. Glasgow score (10.79±2.07) and albumin level (30.08±3.79) g/L in the observation group were lower than those in the control group (12.14±1.94) and albumin level (34.22±5.20) g/L. There were significant differences in age,chronic obstructive pulmonary disease,diabetes,sedative use and antibiotic type between observation group and control group (P <0.05). LASSO regression results showed that age,APACHE Ⅱscore,mechanical ventilation time and albumin were risk factors for VAP in patients with mechanical ventilation. Four ML models were constructed based on the above four risk factors,and the area under the curve(AUC) of xGBoost model was 0.882,the accuracy was 81.30%,the sensitivity was 84.00%,and the specificity was 82.00%. SHAP results showed that the top 4 characteristics of VAP risk contribution were APACHE Ⅱscore,age,mechanical ventilation time and albumin.

Conclusion

xGBoost model has high sensitivity and specificity,which can be used as an auxiliary diagnostic tool to quickly and accurately determine the risk of VAP in patients with mechanical ventilation,and provide reference for clinical decision-making.

表1 机械通气患者VAP 风险的单因素分析
图1 脑梗死并发肺部感染典型CT图
图2 机械通气患者VAP 风险因素筛选
表2 机器学习算法预测VAP 风险
图3 XGBoost 特征变量SHAP 摘要图
1
Trudzinski FC,Neetz B,Bornitz F,et al. Risk factors for prolonged mechanical ventilation and weaning failure:A systematic review[J].Respiration,2022,101(10):959-969.
2
Zorrilla-Vaca A,Arevalo JJ,Grant MC. Protective mechanical ventilation in critically ill patients after surgery[J]. Curr Opin Crit Care,2024,30(6):679-683.
3
Tanios MA.Reconnecting to improve liberation from mechanical ventilation:A new perspective[J]. Chest,2024,165(6):1282-1283.
4
金静怡,王丽华,季建红. ICU 呼吸机相关性肺炎风险预测模型的研究进展[J]. 当代护士,2024,31(22):13-17.
5
张雪梅,董 雪,郭燕杰. 呼吸机相关性肺炎风险预测模型的研究进展[J]. 全科护理,2022,20(32):4497-4499.
6
李 鹏,刘 业,端另波,等. 俯卧位机械通气在重症肺炎患者中的疗效及并发呼吸机相关性肺炎风险因素的研究[J]. 大医生,2024,9(4):109-112.
7
温 慧,聂清梅,孙莉莉,等. ICU 机械通气患者呼吸机相关性肺炎风险预测模型的系统评价[J]. 中华现代护理杂志,2024,30(24):3280-3286.
8
Martin-Loeches I,Torres A. Hospital-acquired pneumonia/ventilatorassociated pneumonia after guidelines[J]. Semin Respir Crit Care Med,2022,43(2):173-174.
9
时铭蔚,李 君,孙春萍,等. 基于机器学习算法构建老年人呼吸机相关肺炎早期预警模型[J]. 中华老年医学杂志,2023,42(6):670-675.
10
燕红玲,王岩岩,陈树斌. PCT、NLR 联合LUBS 预测ICU CRKP致呼吸机相关肺炎撤机及预后分析[J/CD]. 中华肺部疾病杂志(电子版),2024,17(4):617-620.
11
中华医学会重症医学分会. 机械通气临床应用指南(2006)[J].中国危重病急救医学,2007,19(2):65-72.
12
廖理粤,苏越明,邓方阁,等. 呼吸机相关性肺炎诊断、预防和治疗指南的质量评价[J]. 国际呼吸杂志,2016,36(14):1041-1044.
13
Metersky ML,Kalil AC. Management of ventilator-associated pneumonia:Guidelines[J]. Infect Dis Clin North Am,2024,38(1):87-101.
14
Howroyd F,Chacko C,MacDuff A,et al. Ventilator-associated pneumonia:pathobiological heterogeneity and diagnostic challenges[J]. Nat Commun,2024,15(1):6447.
15
Safavi A,Molavynejad S,Rashidi M,et al. The effect of an infection control guideline on the incidence of ventilator-associated pneumonia in patients admitted to the intensive care units[J]. BMC Infect Dis,2023,23(1):198.
16
王成立,周林裕,梁哲勇. 基于TSP-1 和APACHEⅡ评分构建老年重型颅脑损伤患者院内死亡的预测模型[J]. 中国实用神经疾病杂志,2024,27(7):816-820.
17
林立伟,陈湘平,张金炎,等. APACHE Ⅱ评分与氧合指数对老年重症肺炎临床疗效及预后的评估价值[J]. 西藏医药,2024,45(1):82-84.
18
Hassan ME,Al-Khawaja SA,Saeed NK,et al. Causative bacteria of ventilator-associated pneumonia in intensive care unit in Bahrain:Prevalence and antibiotics susceptibility pattern[J]. World J Crit Care Med,2023,12(3):165-175.
19
Trudzinski FC,Neetz B,Bornitz F,et al. Risk factors for prolonged mechanical ventilation and weaning failure:A systematic review[J].Respiration,2022,101(10):959-969.
20
Foucrier A,Dessalle T,Tuffet S,et al. Association between combination antibiotic therapy as opposed as monotherapy and outcomes of ICU patients with Pseudomonas aeruginosa ventilator-associated pneumonia:an ancillary study of the iDIAPASON trial[J]. Crit Care,2023,27(1):211.
21
Tang H,Yuan Z,Li J,et al. Fiberoptic bronchoscopy for the prevention of ventilator-associated pneumonia:a meta-analysis of randomized controlled trials[J]. J Infect Dev Ctries,2024,18(9):1413-1420.
22
Xue-Meng C,Gao-Wang L,Xiao-Mei L,et al. Effect of mechanical ventilation under intubation on respiratory tract change of bacterial count and alteration of bacterial flora[J]. Exp Lung Res,2023,49(1):165-177.
23
Lu P,Li D,Tian Q,et al. Effect of mixed probiotics on pulmonary flora in patients with mechanical ventilation:an exploratory randomized intervention study[J]. Eur J Med Res,2024,29(1):473.
[1] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[2] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[3] 沈月秋, 曹梦琳, 许梅杰, 吴敏丹, 吴凯怡, 陆琳娟. 基于可解释机器学习预测慢性阻塞性肺疾病患者急性加重风险研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 380-384.
[4] 王利江, 程曼曼, 姜波, 张友文, 魏海翔, 韩晓. 难治性自发性气胸手术结局及复发风险分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 104-109.
[5] 曾忠平, 张任玲, 刘静, 张天莎, 艾美梅, 张朋勃. 恶性肿瘤伴急性呼吸衰竭行有创机械通气危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 991-994.
[6] 刘春军, 严方方, 王宝锋, 常婷婷, 郭红红, 李志强. 替加环素联合人免疫球蛋白治疗XDRAB致VAP 的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 797-800.
[7] 张衡, 施歌, 张泽, 高振轩, 杨文强, 王琦, 张黎, 闫晋利. 基于血浆转录组学建立糖尿病周围神经病的生物标志物[J/OL]. 中华神经创伤外科电子杂志, 2025, 11(02): 127-134.
[8] 王谷宜, 黎家琦, 钟燕军, 余波, 吴晨方, 董海云, 徐敏, 王花芹, 唐莉, 朱艳艳, 李金秀, 吕奔. 基于智慧ICU云平台的ARDS集束化管理对ARDS患者临床结局的影响[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 72-77.
[9] 倪韫晖, 袁雪燕, 黄丽丽, 杨毅, 邱海波. 呼吸驱动在保护性通气策略中的研究进展[J/OL]. 中华重症医学电子杂志, 2025, 11(01): 91-94.
[10] 苗明月, 周建新. 肺保护性镇静:应重视呼吸驱动和吸气努力的床旁评估[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 325-328.
[11] 李娅辉, 栾琳, 黄辉云. 中青年肝癌患者根治术后不同复发时期的风险模型构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 112-119.
[12] 陈健, 夏开建, 徐璐, 高福利, 徐晓丹, 王甘红. 基于自动化机器学习建立肝硬化并发急性肾损伤的风险评估模型[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 129-139.
[13] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
[14] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[15] 许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?