切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 564 -569. doi: 10.3877/cma.j.issn.1674-6902.2025.04.012

论著

支气管肺泡灌洗液miR-125a-5p与矽肺患者疾病严重程度及肺功能相关性研究
罗玉1, 袁章安2,(), 禹阳明2, 汪定军3, 熊忠林3, 蒋宁芳3   
  1. 1725000 安康,安康职业技术学院第二附属医院重症医学科
    2725000 安康,安康职业技术学院第二附属医院呼吸内科
    3725000 安康,安康市人民医院呼吸内科
  • 收稿日期:2025-04-14 出版日期:2025-08-25
  • 通信作者: 袁章安
  • 基金资助:
    陕西省药学会"医院药学高质量发展研究项目"(XM-2023-1-2-8)

Correlation research on miR-125a-5p in bronchoalveolar lavage fluid with disease severity and pulmonary function in patients with silicosis

Yu Luo1, Zhangan Yuan2,(), Yangming Yu2, Dingjun Wang3, Zhonglin Xiong3, Ningfang Jiang3   

  1. 1Department of Critical Care Medicine, Ankang Vocational and Technical College Second Affiliated Hospital, Ankang 725000, China
    2Department of Respiratory Medicine, Ankang Vocational and Technical College Second Affiliated Hospital, Ankang 725000, China
    3Department of Respiratory Medicine, Ankang People′s Hospital, Ankang 725000, China
  • Received:2025-04-14 Published:2025-08-25
  • Corresponding author: Zhangan Yuan
引用本文:

罗玉, 袁章安, 禹阳明, 汪定军, 熊忠林, 蒋宁芳. 支气管肺泡灌洗液miR-125a-5p与矽肺患者疾病严重程度及肺功能相关性研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 564-569.

Yu Luo, Zhangan Yuan, Yangming Yu, Dingjun Wang, Zhonglin Xiong, Ningfang Jiang. Correlation research on miR-125a-5p in bronchoalveolar lavage fluid with disease severity and pulmonary function in patients with silicosis[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 564-569.

目的

分析支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)miR-125a-5p水平与矽肺患者疾病严重程度和肺功能的相关性。

方法

选择2019年3月至2024年4月我院收治的经支气管肺泡灌洗矽肺患者109例为对象,根据疾病严重程度分组,0期53例为对照组,Ⅰ~Ⅲ期56例为观察组。采用实时荧光定量聚合酶链式扩增分析BALF miR-125a-5p水平,比较两组肺功能、BALF细胞因子。

结果

观察组BALF miR-125a-5p水平3.26(2.25,3.82)高于对照组1.06(0.62,1.32)(Z=-8.052,P<0.001)。多元Logistics回归分析显示,吸烟史(HR:4.395,95%CI:1.671~11.559,P=0.003)及BALF miR-125a-5p水平(HR:47.848,95%CI:4.396~520.783,P<0.001)为患矽肺的危险因素,BALF miR-125a-5p水平变异存在聚集性(效应估算=22.670,P=0.029),吸烟史对BALF miR-125a-5p水平固定效应有统计学意义(F=158.993,P<0.001)。BALF miR-125a-5p水平对矽肺诊断受试者工作特性曲线下面积为0.947(95%CI:0.887~0.981),BALF miR-125a-5p水平对矽肺的诊断灵敏性及特异性分别为89.29%、90.57%。观察组Ⅰ期31例(55.36%)、Ⅱ期16例(28.57%)、Ⅲ期9例(16.07%)。BALF miR-125a-5p水平Ⅰ期2.36(1.84,3.26)、Ⅱ期3.50(3.26,4.10)、Ⅲ期4.25(3.50,4.42)高于对照组1.06(0.62,1.32)(H=70.774,P<0.001);Ⅰ~Ⅲ期矽肺患者BALF miR-125a-5p逐期升高。矽肺患者BALF miR-125a-5p中位值3.26,BALF miR-125a-5p≥3.26患者肺活量(VC)(69.71±5.33)%、第1秒用力呼气容积(FEV1)(78.24±12.20)%、用力肺活量(FVC)(71.39±11.253)%、一氧化碳扩散容量(DLCO)(61.22±11.12)%低于BALF miR-125a-5p<3.26患者VC[(75.50±2.44)%,t=5.161,P<0.001]、FEV1[(85.39±13.10)%,t=2.115,P=0.039]、FVC[(80.64±12.39)%,t=2.928,P=0.005]、DLCO[(72.19±14.82)%,t=3.147,P=0.003]。BALF miR-125a-5p≥3.26患者发生限制性呼吸机功能障碍概率大[26(89.66%)比11(40.74),P<0.001]。Spearman秩相关性分析显示,矽肺患者BALF miR-125a-5p水平与白细胞介素(IL)-5、IL-6、IL-17A、肿瘤坏死因子α(TNF-α)、干扰素诱导蛋白10(IP-10)呈正相关(rs=0.299~0.671,P<0.05)。

结论

BALF miR-125a-5p高水平与矽肺严重程度增加和肺功能降低相关。

Objective

To analyze the relationship between the level of miR-125a-5p in bronchoalveolar lavage fluid (BALF) and the severity of disease and lung function in silicosis patients.

Methods

A total of 109 patients with silicosis who underwent bronchoalveolar lavage and were admitted to our hospital from March 2019 to April 2024 were selected as the subjects. They were grouped according to the severity of the disease. 53 cases in stage 0 were the control group, and 56 cases in stages Ⅰ to Ⅲ were the observation group. The level of miR-125a-5p in BALF was analyzed by real-time fluorescence quantitative polymerase chain amplification, and the lung functions and BALF cytokines of the two groups were compared.

Results

The level of BALF miR-125a-5p in the observation group was significantly higher than that in the control group [3.26 (2.25, 3.82) vs. 1.06 (0.62, 1.32), Z=-8.052, P<0.001]. Multivariate Logistics regression analysis showed that combined smoking history and BALF miR-125a-5p level were independent risk factors for silicosis in workers, and the variation of BALF miR-125a-5p level between the observation group and the silicosis group was clustered (effect estimate=22.670, P=0.029), and the fixed effect of smoking history [HR: 4.395, 95%CI: 1.671~11.559, P=0.003] on BALF miR-125a-5p level[HR: 47.848, 95%CI: 4.396~520.783, P<0.001] was statistically significant (F=158.993, P<0.001). The area under the working characteristic curve of BALF miR-125a-5p level for the diagnosis of silicosis was 0.947 (95%CI: 0.887~0.981), and the sensitivity and specificity of BALF miR-125a-5p level for the diagnosis of silicosis were 89.29% and 90.57%, respectively. In the silicosis group, 31 cases (55.36%) were stage Ⅰ, 16 cases (28.57%) were stage Ⅱ, and 9 cases (16.07%) were stage Ⅲ. The levels of BALF miR-125a-5p in patients with stage Ⅰ2.36(1.84, 3.26), stage Ⅱ3.50 (3.26, 4.10), and stage Ⅲ4.25 (3.50, 4.42) silicosis were significantly higher than those in the control group 1.06 (0.62, 1.32) (H=70.774, P<0.001), and the levels of BALF miR-125a-5p in stage Ⅰ to Ⅲ silicosis patients increased stage by stage. The median value of BALF miR-125a-5p in patients with silicosis was 3.26. In patients with BALF miR-125a-5p≥3.26, VC[(69.71±5.33)% vs. (75.50±2.44)%, t=5.161, P<0.001], FEV1[ (78.24±12.20)% vs. (85.39±13.10)%, t=2.115, P=0.039], FVC[(71.39±11.25)% vs. (80.64±12.39)%, t=2.928, P=0.005] and DLCO[ (61.22±11.12)% vs. (72.19±14.82)%, t=3.147, P=0.003] were lower than those in patients with BALF miR-125a-5p<3.26. Patients with BALF miR-125a-5p≥3.26 had a high probability of developing restrictive ventilator dysfunction [26(89.66%) vs. 11(40.74%), P<0.001]. Spearman rank correlation analysis showed that the expression level of BALF miR-125a-5p was positively correlated with the levels of interleukin (IL) -5, IL-6, IL-17A, interferon-induced protein 10(IP-10) and tumor necrosis factor α(TNF-α) in silicosis patients (rs=0.299~0.671, P<0.05).

Conclusion

The high level of BALF miR-125a-5p is significantly correlated with the increase of silicosis severity and the decrease of lung function.

表1 两组矽肺患者临床资料比较
表2 BALF miR-125a-5p诊断矽肺Logistics回归分析
图1 矽肺患者BALF miR-125a-5p与细胞因子关系矩阵散点图注:IL为白细胞介素-6;TNF-α为肿瘤坏死因子α;IP-10为干扰素诱导蛋白10
1
Austin EK, James C, Tessier J. Early detection methods for silicosis in australia and internationally: A review of the literature[J]. Int J Environ Res Public Health, 2021, 18(15): 8123.
2
Li T, Yang X, Xu H, et al. Early identification, accurate diagnosis, and treatment of silicosis[J]. Can Respir J, 2022, 2022: 3769134.
3
Handra CM, Gurzu IL, Chirila M, et al. Silicosis: New challenges from an old inflammatory and fibrotic disease[J]. Front Biosci (Landmark Ed), 2023, 28(5): 96.
4
李丹,张乙,张丽娟,等. N-乙酰基-丝氨酰-天冬氨酰-赖氨酰-脯氨酸对二氧化硅致大鼠矽肺纤维化中巨噬细胞活化的调节作用[J]. 环境与健康杂志2021, 38(1): 20-25.
5
何汶芮,杨帆,侯润苏,等. 基于代谢组学探讨金水尘肺方改善二氧化硅诱导大鼠矽肺肺纤维化的作用机制研究[J]. 中国中西医结合急救杂志2023, 30(6): 657-663.
6
田王斌,金发光,顾兴,等. 巨噬细胞移动抑制因子在慢性阻塞性肺疾病发病中的作用及机制研究进展[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(1): 112-114.
7
程鸿明,何海兰,王袁,等. 基于生物信息学分析筛选矽肺患者肺泡巨噬细胞中线粒体靶向标志物[J]. 安徽医科大学学报2024, 59(10): 1828-1834,1841.
8
Li R, Kang H, Chen S. From basic research to clinical practice: considerations for treatment drugs for silicosis[J]. Int J Mol Sci, 2023, 24(9): 8333.
9
You Y, Wu X, Yuan H, et al. Crystalline silica-induced recruitment and immuno-imbalance of CD4(+) tissue resident memory T cells promote silicosis progression[J]. Commun Biol, 2024, 7(1): 971.
10
Ding M, Pei Y, Zhang C, et al. Exosomal miR-125a-5p regulates T lymphocyte subsets to promote silica-induced pulmonary fibrosis by targeting TRAF6[J]. Ecotoxicol Environ Saf, 2023, 249: 114401.
11
Wang R, Zhu Z, Peng S, et al. Exosome microRNA-125a-5p derived from epithelium promotes M1 macrophage polarization by targeting IL1RN in chronic obstructive pulmonary disease[J]. Int Immunopharmacol, 2024, 137: 112466.
12
Li M, Li Y, Liu Q, et al. Exosomal miR-552-3p isolated from BALF of patients with silicosis induces fibroblast activation[J]. Toxicol Lett, 2024, 401: 55-70.
13
Castro MCS, Nani ASF, Salum KCR, et al. Genetic polymorphisms and their effects on the severity of silicosis in workers exposed to silica in Brazil[J]. J Bras Pneumol, 2022, 48(5): e20220167.
14
Li S, Zhao J, Han G, et al. Silicon dioxide-induced endoplasmic reticulum stress of alveolar macrophages and its role on the formation of silicosis fibrosis: a review article[J]. Toxicol Res (Camb), 2023, 12(6): 1024-1033.
15
Adamcakova J, Mokra D. New insights into pathomechanisms and treatment possibilities for lung silicosis[J]. Int J Mol Sci, 2021, 22(8): 4162.
16
Song MY, Wang JX, Sun YL, et al. Tetrandrine alleviates silicosis by inhibiting canonical and non-canonical NLRP3 inflammasome activation in lung macrophages[J]. Acta Pharmacol Sin, 2022, 43(5): 1274-1284.
17
Zhou X, Zhang C, Yang S, et al. Macrophage-derived MMP12 promotes fibrosis through sustained damage to endothelial cells[J]. J Hazard Mater, 2024, 461: 132733.
18
Hua JT, Cool CD, Green FHY. Pathology and mineralogy of the pneumoconioses[J]. Semin Respir Crit Care Med, 2023, 44(3): 327-339.
19
Howlett P, Gan J, Lesosky M, et al. Relationship between cumulative silica exposure and silicosis: a systematic review and dose-response meta-analysis[J]. Thorax, 2024, 79(10): 934-942.
20
Liu TT, Sun HF, Han YX, et al. The role of inflammation in silicosis[J]. Front Pharmacol, 2024, 15: 1362509.
21
Malainou C, Abdin SM, Lachmann N, et al. Alveolar macrophages in tissue homeostasis, inflammation, and infection: evolving concepts of therapeutic targeting[J]. J Clin Invest, 2023, 133(19): e170501.
22
Pervizaj-Oruqaj L, Ferrero MR, Matt U, et al. The guardians of pulmonary harmony: alveolar macrophages orchestrating the symphony of lung inflammation and tissue homeostasis[J]. Eur Respir Rev, 2024, 33(172): 230263.
23
Wohnhaas CT, Baßler K, Watson CK, et al. Monocyte-derived alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling[J]. Front Immunol, 2024, 15: 1325090.
24
Li X, Mara AB, Musial SC, et al. Coordinated chemokine expression defines macrophage subsets across tissues[J]. Nat Immunol, 2024, 25(6): 1110-1122.
25
Yang G, Yang Y, Liu Y, et al. Regulation of alveolar macrophage death in pulmonary fibrosis: a review[J]. Apoptosis, 2023, 28(11-12): 1505-1519.
26
Huang L, Zhang Y, Yang J, et al. Anti-fibrotic effects and the mechanism of action of miR-29c in silicosis[J]. Mol Med Rep, 2021, 23(4): 292.
27
Niu Z, Wang L, Qin X, et al. Macrophage derived miR-7219-3p-containing exosomes mediate fibroblast trans-differentiation by targeting SPRY1 in silicosis[J]. Toxicology, 2022, 479: 153310.
28
Chang Y, Han JA, Kang SM, et al. Clinical impact of serum exosomal microRNA in liver fibrosis[J]. PLoS One, 2021, 16(9): e0255672.
29
Zhu K, Xu A, Xia W, et al. Integrated analysis of the molecular mechanisms in idiopathic pulmonary fibrosis[J]. Int J Med Sci, 2021, 18(15): 3412-3424.
30
Ding M, Zhang C, Wang W, et al. Silica-exposed macrophages-secreted exosomal miR125a-5p induces Th1/Th2 and Treg/Th17 cell imbalance and promotes fibroblast transdifferentiation[J]. Ecotoxicol Environ Saf, 2023, 267: 115647.
[1] 李沛, 张海龙, 茅佳洋, 徐大荣, 赵菁. 肝素结合蛋白与白细胞介素-6水平在儿童大叶性肺炎中的动态变化及其与病情的相关性[J/OL]. 中华实验和临床感染病杂志(电子版), 2025, 19(02): 84-95.
[2] 黄恩民, 侯泽辉, 马宁, 陈双, 周太成. 腹腔镜下膈肌折叠术在成人膈膨升中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 422-426.
[3] 中华医学会呼吸病学分会肺功能学组. 成人肺功能检查技术进展及临床应用推荐指南(2025版)[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 197-212.
[4] 陈晨, 裴永坚, 黄永康, 周童. AECOPD 患者血清CCN1、ECP、GSH-Px 与肺功能及免疫相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 23-28.
[5] 司茹雅, 吕向妮, 何霞, 卢瑞萍, 张婷. 呼吸肌训练与阶段性心肺康复对心脏瓣膜置换术后肺功能及运动耐力的影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 975-979.
[6] 黄波翠, 蔡思铭, 古裕鸟, 庄秀娟, 钟娇霞, 吴小文, 霍开明. 哮喘患儿IL-10 基因多态性与肺功能及外周血Treg 细胞的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1003-1007.
[7] 张璐, 王勇, 代芬, 于世勇, 晋军. 肺康复干预对主动脉瓣重度狭窄合并肺部感染的临床疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 1024-1026.
[8] 梁波, 张春雨, 郑永财, 徐冰, 蒋敏娜, 赵学刚, 刘晓敏. 结缔组织疾病相关间质性肺病肺部超声与疾病严重程度的相关性[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 875-881.
[9] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[10] 杨莎莎, 张毛为, 孙宜田, 刘亚南, 位娟, 魏建, 陈碧. 结缔组织疾病相关间质性肺病并发小气道功能障碍临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 738-743.
[11] 郭璟琪, 魏明言, 刘芳, 李冬凌, 关金平, 李立华. 乙酰半胱氨酸治疗慢性阻塞性肺疾病急性加重期的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 768-772.
[12] 刘雯, 赵明栋, 夏伟, 潘以雄. 不同剂量比阿培南治疗重症肺炎的疗效分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 789-792.
[13] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[14] 李亚妮, 韩霜, 陈敏, 秦军胜. 溃疡性结肠炎患者粪便细菌与粪钙卫蛋白、全身免疫炎症指数、D-二聚体水平及疾病严重程度的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 179-184.
[15] 闫维, 张二明, 张克, 安欣华, 向平超. 北京市石景山区40岁及以上居民早期慢性阻塞性肺疾病异质性及影响因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 533-540.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?