切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (05) : 702 -707. doi: 10.3877/cma.j.issn.1674-6902.2025.05.007

论著

中性粒细胞-白蛋白比值对慢性阻塞性肺疾病危重患者全因死亡风险的预测意义
周滇妹, 字楷, 文富强()   
  1. 610041 成都,四川大学华西医院呼吸与危重症医学科
  • 收稿日期:2025-06-09 出版日期:2025-10-25
  • 通信作者: 文富强

Neutrophil percentage to albumin ratio as a predictor of all-cause mortality in critically ill patients with chronic obstructive pulmonary disease

Dianmei Zhou, Kai Zi, Fuqiang Wen()   

  1. Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
  • Received:2025-06-09 Published:2025-10-25
  • Corresponding author: Fuqiang Wen
引用本文:

周滇妹, 字楷, 文富强. 中性粒细胞-白蛋白比值对慢性阻塞性肺疾病危重患者全因死亡风险的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 702-707.

Dianmei Zhou, Kai Zi, Fuqiang Wen. Neutrophil percentage to albumin ratio as a predictor of all-cause mortality in critically ill patients with chronic obstructive pulmonary disease[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(05): 702-707.

目的

探讨中性粒细胞-白蛋白比值(neutrophil percentage to albumin ratio, NPAR)对慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)危重患者短期(28 d)及长期(365 d)全因死亡风险的预测价值。

方法

基于美国重症监护医学信息数据库(Medical Information Mart for Intensive Care Ⅳ,MIMIC-Ⅳ),采用回顾性队列研究设计,纳入539例接受重症监护的COPD患者。根据NPAR四分位数将患者分为Q1~Q4组,主要研究终点为28 d及365 d全因病死率。采用Kaplan-Meier法绘制生存曲线并进行log-rank检验;通过单因素及多因素Cox比例风险回归模型分析NPAR与死亡风险的相关性。利用限制性立方样条(restricted cubic spline, RCS)分析NPAR与死亡风险的剂量-反应关系,若存在非线性关联,则采用两段线性回归模型确定关联转折点。通过亚组分析检验结果的稳健性。

结果

研究人群的中位年龄为71岁(63~79),男性281例(52.1%)。生存分析显示,Q4组患者28 d及365 d累积生存率显著低于其他组别(log-rank检验,P<0.001)。经多因素校正后,Q4组患者28 d死亡风险[校正风险比(adjusted hazard ratio, aHR)=1.61,95%CI:1.06~2.43,P=0.024]及365 d死亡风险(aHR=1.87,95%CI:1.32~2.65,P<0.001)显著高于Q1组。RCS分析显示NPAR与死亡率呈非线性U型关联(非线性检验P<0.001),转折点分别为22.88 d(28 d)和22.29 d(365 d)。超过转折点后,NPAR每增加1个单位,28 d死亡风险增加4.4%(HR=1.044,95%CI:1.027~1.062,P<0.001),365 d死亡风险增加3.8%(HR=1.038,95%CI:1.022~1.054,P<0.001)。亚组分析未发现显著交互作用(交互作用P>0.05)。

结论

NPAR是COPD危重患者短期及长期死亡风险的预测指标,其U型剂量-反应关系为临床风险分层和预后评估提供了新的量化依据。

Objective

To investigate the predictive value of the neutrophil percentage to albumin ratio (NPAR) for short-term 28 day and long-term 365 day all-cause mortality in critically ill patients with chronic obstructive pulmonary disease (COPD).

Methods

Using a retrospective cohort design based on the Medical Information Mart for Intensive Care-Ⅳ(MIMIC-Ⅳ) database, we enrolled 539 COPD patients admitted to the intensive care unit (ICU). Patients were stratified into quartiles (Q1~Q4) according to NPAR levels. The primary endpoints were 28 day and 365 day all-cause mortality. Kaplan-Meier survival curves were constructed, and differences were assessed using the log-rank test. Univariate and multivariate Cox proportional hazards regression models were employed to evaluate the association between NPAR and mortality. Restricted cubic spline (RCS) analysis was used to examine the dose-response relationship; if a nonlinear association was detected, a two-piecewise linear regression model was applied to identify the inflection point. Subgroup analyses were performed to assess the robustness of the findings.

Results

The median age of the study population was 71 (63-79) years, with 281 (52.1%) male patients. Kaplan-Meier analysis revealed that the Q4 group had significantly lower cumulative survival rates at both 28 and 365 days compared to other groups (log-rank test, allP<0.001). After multivariate adjustment, the Q4 group exhibited significantly higher risks of 28-day mortality [adjusted hazard ratio (aHR)=1.61, 95%CI: 1.06~2.43, P=0.024] and 365-day mortality (aHR=1.87, 95%CI: 1.32~2.65, P<0.001) compared to the Q1 group. RCS analysis demonstrated a nonlinear U-shaped association between NPAR and mortality (nonlinearity P<0.001), with inflection points at 22.88 28 day and 22.29 365 day. Beyond these thresholds, each 1-unit increase in NPAR was associated with a 4.4% increase in 28 day mortality risk (HR=1.044, 95%CI: 1.027~1.062, P<0.001) and a 3.8% increase in 365 day mortality risk (HR=1.038, 95%CI: 1.022~1.054, P<0.001). Subgroup analyses showed no significant interaction effects (all interaction P>0.05).

Conclusion

NPAR is an independent predictor of short-and long-term all-cause mortality in critically ill COPD patients. The U-shaped dose-response relationship provides a novel quantitative basis for clinical risk stratification and prognostic assessment.

表1 按NPAR四分位数分组患者的临床特征比较
临床资料 总体(n=539) Q1(n=136) Q2(n=136) Q3(n=132) Q4(n=135) P
体质量(kg) 80.0(66.0, 94.6) 80.4(65.8, 93.2) 84.5(69.1, 95.9) 80.7(68.0, 96.7) 74.6(61.2, 89.6) 0.031
CCI 6(5, 9) 6(5, 8) 7(5, 9) 7(5, 9) 6(5, 9) 0.488
高血压[n(%)] 122(22.6) 30(22.1) 32(23.5) 26(19.7) 34(25.2) 0.743
糖尿病[n(%)] 175(32.5) 45(33.1) 48(35.3) 50(37.9) 32(23.7) 0.072
心肌梗死[n(%)] 133(24.7) 35(25.7) 40(29.4) 33(25.0) 25(18.5) 0.214
心力衰竭[n(%)] 240(44.5) 57(41.9) 74(54.4) 57(43.2) 52(38.5) 0.050
轻度肝病[n(%)] 104(19.3) 34(25.0) 22(16.2) 27(20.5) 21(15.6) 0.170
重度肝病[n(%)] 50(9.3) 15(11.0) 11(8.1) 11(8.3) 13(9.6) 0.829
肾脏疾病[n(%)] 139(25.8) 28(20.6) 41(30.1) 37 (28.0) 33(24.4) 0.290
恶性肿瘤[n(%)] 89(16.5) 16(11.8) 17(12.5) 27(20.5) 29(21.5) 0.052
APSⅢ 52(40, 66) 46(36, 63) 47(36, 60) 55(43, 67) 61(49, 79) 0.001
SAPSⅡ 42(34, 52) 39(29, 50) 38(33, 48) 44(37, 54) 48(39, 55) 0.001
SOFA 6(4, 9) 6(3, 8) 5(3, 8) 7(4, 9) 7(4, 11) 0.001
心率(次/min) 88(76, 100) 85(75, 98) 88(76, 99) 91(78, 102) 87(78, 102) 0.205
呼吸(次/min) 20(18, 23) 20(17, 22) 20(18, 22) 20(18, 23) 20(18, 24) 0.589
平均动脉压(mmHg) 75(69, 82) 76(72, 85) 76(69, 84) 74(69, 80) 72(67, 78) 0.001
脉氧饱和度(%) 96(95, 98) 96(95, 98) 96(95, 97) 96(95, 98) 96(94, 98) 0.478
血红蛋白(g/dl) 10.5(8.9, 12.1) 11.3(9.4,12.5) 11.0(9.3, 12.2) 10.4(8.9, 12.0) 9.7(8.5, 11.0) 0.001
血小板(109/L) 193(130, 262) 179(121, 227) 211(150, 282) 189(131, 264) 192(125, 289) 0.013
白细胞(109/L) 12.0(8.2, 17.2) 9.7(6.6,13.5) 11.7(8.0, 15.0) 12.6(9.1, 18.0) 14.6(10.0, 20.5) 0.001
中性粒细胞(109/L) 9.89(6.30,14.63) 6.90(4.66,10.87) 9.46(6.51,13.15) 10.70(7.32,16.33) 13.43(8.45,18.26) 0.001
白蛋白(g/dl) 3.1(2.6, 3.5) 3.6(3.2, 3.90) 3.4(3.1, 3.6) 3.0(2.7, 3.2) 2.4(2.1, 2.6) 0.001
血糖(mg/dl) 132(104, 177) 122(102, 148) 144(113, 182) 140(104, 182) 132(100, 174) 0.005
肌酐(mg/dl) 1.2(0.8, 1.9) 1.1(0.8, 1.7) 1.1(0.8, 1.9) 1.4(0.8, 2.1) 1.2(0.8, 1.9) 0.174
钙(mmol/L) 8.1(7.5, 8.8) 8.5(8.0, 9.1) 8.5(7.9, 8.9) 8.0(7.5, 8.7) 7.6(7.1, 8.1) 0.001
钾(mmol/L) 4.2(3.7, 4.7) 4.2(3.8, 4.7) 4.3(3.9, 4.9) 4.3(3.7, 4.7) 4.0(3.6, 4.4) 0.002
PT (s) 14.3(12.5, 17.6) 13.3(11.9, 16.5) 13.6(12.2, 17.3) 14.7(12.6, 17.8) 15.4(13.7, 18.3) 0.001
APTT(s) 31.2(27.9, 39.1) 30.4(27.6, 36.9) 30.1(27.9, 38.2) 31.6(27.9, 40.3) 32.3(28.8, 41.2) 0.212
ICU时长(d) 4(2, 8) 4(2, 8) 4(2, 8) 4(2, 8) 4(3, 8) 0.609
住院时长(d) 9(6, 17) 9(5, 18) 9(6, 14) 10(6, 17) 11(6, 18) 0.303
院内死亡[n(%)] 133(24.7) 29(21.3) 23(16.9) 34(25.8) 47(34.8) 0.005
28 d死亡[n(%)] 182(33.8) 36(26.5) 35(25.7) 47(35.6) 64(47.4) 0.001
90 d死亡[n(%)] 204(37.8) 40(29.4) 39(28.7) 54(40.9) 71(52.6) 0.001
365 d死亡[n(%)] 272(50.5) 51(37.5) 62(45.6) 71(53.8) 88(65.2) 0.001
表2 28 d全因病死率的Cox比例风险回归分析
表3 365 d全因病死率的Cox比例风险回归分析
图1 NPAR与28 d(A)及365 d(B)全因病死率的限制性立方样条回归分析
表4 NPAR与28 d及365 d全因病死率关联的亚组分析
1
GBD 2021 CAUSES OF DEATH COLLABORATORS. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2100-2132.
2
Chen SM, Kuhn M, Prettner K, et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: a health-augmented macroeconomic modelling study[J]. Lancet Glob Health, 2023, 11(8): e1183-e1193.
3
程炜炜,张青,张诚实,等. 全身免疫炎症指数与慢性阻塞性肺疾病急性加重期病情严重程度相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(4): 580-584.
4
Warwick M, Fernando SM, Aaron SD, et al. Outcomes and resource utilization among patients admitted to the intensive care unit following acute exacerbation of chronic obstructive pulmonary disease[J]. J Intensive Care Med, 2021, 36(9): 1091-1097.
5
Mariotti B, Bracaglia C, Gasperini S, et al. Innate immune reprogramming in circulating neutrophils of COPD patients[J/OL]. J Allergy Clin Immunol, 2025: S0091-6749(25)00418-X.
6
Liao SX, Wang YW, Sun PP, et al. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances[J]. Int Immunopharmacol, 2025, 144: 113634.
7
Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: Pathogenesis and clinical significance[J]. JPEN J Parenter Enteral Nutr, 2019, 43(2): 181-193.
8
Lan CC, Su WL, Yang MC, et al. Predictive role of neutrophil-percentage-to-albumin, neutrophil-to-lymphocyte and eosinophil-to-lymphocyte ratios for mortality in patients with COPD: Evidence from NHANES 2011-2018[J]. Respirology, 2023, 28(12): 1136-1146.
9
Shi Y, Shi Y, Liu Y, et al. Association between neutrophil percentage to serum albumin ratio and in-hospital mortality of patients with chronic obstructive pulmonary disease in intensive care unit: a retrospective cohort study[J]. Int J Chron Obstruct Pulmon Dis, 2025, 20: 1227-1237.
10
Lv XN, Shen YQ, Li ZQ, et al. Neutrophil percentage to albumin ratio is associated with stroke-associated pneumonia and poor outcome in patients with spontaneous intracerebral hemorrhage[J/OL]. Front Immunol, 2023, 14: 1173718.
11
Hu Z, Wang J, Xue Y, et al. The neutrophil-to-albumin ratio as a new predictor of all-cause mortality in patients with heart failure[J].J Inflamm Res, 2022, 15: 701-713.
12
Xu Y, Lin Z, Zhu C, et al. The neutrophil percentage-to-albumin ratio is associated with all-cause mortality in patients with atrial fibrillation: a retrospective study[J]. J Inflamm Res, 2023, 16: 691-700.
13
Li X, Gu Z, Gao J. Elevated neutrophil percentage-to-albumin ratio predicts increased all-cause and cardiovascular mortality among individuals with diabetes[J]. Sci Rep, 2024, 14(1): 27870.
14
Yang Y, Ding R, Li T, et al. Elevated neutrophil-percentage-to-albumin ratio predicts increased all-cause and cardiovascular mortality in hypertensive patients: Evidence from NHANES 1999-2018[J]. Maturitas, 2025, 192: 108169.
15
阚婉容. 慢性阻塞性肺疾病发病机制的研究进展[J]. 临床医学进展2022, 12(12): 11970-11974.
16
Benjamin JT, Plosa EJ, Sucre JM, et al. Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD[J]. J Clin Invest, 2021, 131(1): e139481.
17
范傲,黄钟,段宇清,等. 慢性阻塞性肺疾病患者血浆中性粒细胞胞外诱捕网和白细胞介素-8及白细胞介素-33的表达水平及其临床意义[EB/OL]. 华西期刊社,[2025][2025-05-31].

URL    
18
Belinskaia DA, Voronina PA, Goncharov NV. Integrative role of albumin: Evolutionary, biochemical and pathophysiological aspects[J]. J Evol Biochem Physiol, 2021, 57(6): 1419-1448.
19
Belinskaia DA, Voronina PA, Shmurak VI, et al. Serum albumin in health and disease: Esterase, antioxidant, transporting and signaling properties[J]. Int J Mol Sci, 2021, 22(19): 10318.
20
Ao T, Huang Y, Zhen P, et al. Association between C-reactive protein to albumin ratio and chronic obstructive pulmonary disease: a cross-sectional study[J]. BMC pulm Med, 2025, 25(1): 1.
21
Farrugia A, Mori F. Therapeutic solutions of human albumin-The possible effect of process-induced molecular alterations on clinical efficacy and safety[J]. J Pharm Sci, 2022, 111(5): 1292-1308.
22
Kubysheva NI, Postnikova LB, Novikov VV, et al. Functional activity of blood neutrophils in patients with stable course and exacerbation of chronic obstructive pulmonary disease[J]. Bull Exp Biol Med, 2023, 176(1): 26-29.
23
Lonergan M, Dicker AJ, Crichton ML, et al. Blood neutrophil counts are associated with exacerbation frequency and mortality in COPD[J]. Respir Res, 2020, 21(1): 166.
24
Zinellu E, Fois AG, Sotgiu E, et al. Serum albumin concentrations in stable chronic obstructive pulmonary disease: a systematic review and Meta-analysis[J]. J Clin Med, 2021, 10(2): 269.
25
Ling M, Huiyin L, Shanglin C, et al. Relationship between human serum albumin and in-hospital mortality in critical care patients with chronic obstructive pulmonary disease[J/OL]. Front Med (Lausanne), 2023, 10: 1109910.
[1] 高瞻, 唐莎莎, 秦蘅, 王关嵩, 张雯. 慢性阻塞性肺疾病合并肺癌的临床特征及危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(05): 685-690.
[2] 余辉, 王双兰, 吴庆能, 杨昌其, 彭峰扬, 郭灯亮, 张艺, 崔丽, 吴佳佳. 血清骨保护素与慢性阻塞性肺疾病骨丢失和骨质疏松诊断的关系[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 546-551.
[3] 丁增巴姆, 杨轲, 帅维正, 陈婷, 李盼盼, 马静, 宋韦, 王萍, 王倩, 刘欢. 呼吸训练仪对慢性阻塞性肺疾病患者肺功能及依从性的影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 575-579.
[4] 汪锐, 陈自武, 杨朴强, 田静, 陈莹, 林成, 汪伟. 基于血清标志物机器学习模型对慢性阻塞性肺疾病急性加重期机械通气风险的预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 615-619.
[5] 师董芳, 吕红, 陆兵, 张念志, 周宝银, 苗伟. 益气健脾化痰汤对慢性阻塞性肺疾病急性加重期患者改善肺功能的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 643-646.
[6] 陈欧丽, 王桢黎. 新型三联治疗药物在COPD中的应用研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 650-653.
[7] 孙晓容, 钟瑶, 张雯, 刘佳铭, 叶东樊. 肺癌免疫治疗并发脊髓炎救治成功一例[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 657-659.
[8] 同娟, 乔燕, 田丹, 高萌, 毛书祥, 杨洋. 慢性阻塞性肺疾病伴心力衰竭患者继发肺部感染的危险因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 516-520.
[9] 吴春兴, 廖庆, 杨海玲, 袁海娟, 彭小林, 张峰, 范日升, 谢良骏. 低剂量SPECT/CT 肺灌注显像诊断慢性阻塞性肺疾病并发肺栓塞的安全性及有效性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 350-354.
[10] 沈月秋, 曹梦琳, 许梅杰, 吴敏丹, 吴凯怡, 陆琳娟. 基于可解释机器学习预测慢性阻塞性肺疾病患者急性加重风险研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 380-384.
[11] 宋春雪, 王亮亮, 袁玺, 徐庚辰, 刘柳, 马银娟, 丁琦, 魏霞. 中性粒细胞/淋巴细胞比值在不同血嗜酸性粒细胞水平慢性阻塞性肺疾病急性加重患者中的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 416-422.
[12] 尤宁, 秦卫, 徐斌, 彭一莲, 杨小玉. 慢性阻塞性肺疾病并发重症社区获得性肺炎预后风险预测[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 479-482.
[13] 王丹, 王昌锋, 王丽, 綦彬, 叶媛媛, 范浩. 慢性阻塞性肺疾病患者认知功能减退与睡眠呼吸暂停程度临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 390-394.
[14] 符凤妹, 方锋凯, 符妹垂, 谢五菊, 许振良, 胡燕燊. 慢性阻塞性肺疾病经胸超声弹性成像特征与病情相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 256-260.
[15] 游通, 黄渝茹, 刘英, 罗兴艳, 罗琴. 慢性阻塞性肺疾病缓解期规律与不规律药物使用对疗效的影响分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 321-325.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?