切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (04) : 420 -425. doi: 10.3877/cma.j.issn.1674-6902.2019.04.004

论著

HHIP基因rs13118928单核苷酸多态性与慢性阻塞性肺疾病易感性的荟萃分析
吴天勇1,(), 陈宏斌2, 程丹2   
  1. 1. 833400 博州,新疆博州人民医院呼吸内科
    2. 430060 武汉,武汉大学人民医院呼吸内科
  • 收稿日期:2019-01-15 出版日期:2019-08-20
  • 通信作者: 吴天勇
  • 基金资助:
    国家自然科学基金资助项目(81600023)

Meta-analysis on relationship between HHIP rs13118928 single nucleotide polymorphism and susceptibility to chronic obstructive pulmonary disease

Tianyong Wu1,(), Hongbin Chen2, Dan Cheng2   

  1. 1. Department of Respiratory Medicine, People′s Hospital of Bole, Bole 833400, Xinjiang Uygur Autonomous Region, China
    2. Department of Respiratory Medicine, People′s Hospital of Wuhan University, Wuhan 430060, China
  • Received:2019-01-15 Published:2019-08-20
  • Corresponding author: Tianyong Wu
引用本文:

吴天勇, 陈宏斌, 程丹. HHIP基因rs13118928单核苷酸多态性与慢性阻塞性肺疾病易感性的荟萃分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(04): 420-425.

Tianyong Wu, Hongbin Chen, Dan Cheng. Meta-analysis on relationship between HHIP rs13118928 single nucleotide polymorphism and susceptibility to chronic obstructive pulmonary disease[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(04): 420-425.

目的

探讨Hedgehog相互作用蛋白(HHIP)基因rs13118928位点单核苷酸多态性与慢性阻塞性肺疾病(COPD)易感性的关联。

方法

系统检索PubMed、EMBASE、Web of Science、中国知网和万方五个电子数据库。检索时间为建库到2018年1月5日,根据制定的纳入标准筛选出相关研究文章,提取数据后利用RevMan5.3软件进行统计分析,计算出各种遗传模型下的比值比(OR)和95%的可信区间(95%CI)。

结果

本项研究共纳入7篇文献,包括5 157个COPD患者和9 768个健康对照者。荟萃分析结果显示HHIP基因rs13118928多态性在五种遗传模型下均与COPD有显著相关性:A vs. G,OR=1.14,95%CI,1.08~1.20,P<0.001;AA vs. GG,OR=1.36,95%CI,1.20~1.55,P<0.001;AG vs. GG,OR=1.27,95%CI,1.03~1.58,P=0.030;AA+AG vs. GG,OR=1.31,95%CI,1.10~1.57,P=0.003;AA vs. AG+GG,OR=1.12,95%CI,1.04~1.21,P=0.002。亚组分析结果显示在亚洲人种和高加索人种中,rs13118928多态性在A vs. G和AA vs. GG遗传模型下与COPD的发生有显著相关性。

结论

HHIP基因rs13118928单核苷酸多态性与COPD的发生有显著相关性。A等位基因和AA基因型携带者对COPD有较高的易感性。

Objective

To explore whether the HHIP rs13118928 single nucleotide polymorphism (SNP) is associated with the susceptibility to chronic obstructive pulmonary disease (COPD).

Methods

Based on our inclusion criteria, a systematic search of the relevant studies from the construction of the database until January 5, 2018 was conducted using the PubMed, EMBASE, Web of Science, CNKI and Wanfang databases. Meta-analysis was performed with RevMan 5.3 software. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were estimated under allelic and genotypic comparisons.

Results

Seven reports containing 5 157 COPD patients and 9768 controls met the inclusion criteria. The results suggested a significant relationship between HHIP rs13118928 SNP and COPD susceptibility (A vs. G, OR=1.14, 95%CI, 1.08-1.20, P<0.001; AA vs. GG, OR=1.36, 95%CI, 1.20-1.55, P<0.001; AG vs. GG; OR=1.27, 95%CI, 1.03-1.58, P=0.030; AA+ AG vs. GG, OR=1.31, 95%CI, 1.10-1.57, P=0.003; AA vs. AG+ GG, OR=1.12, 95%CI, 1.04-1.21, P=0.002). Subgroup analysis by ethnicity indicated that there existed a significant relationship between rs13118928 SNP and the occurrence of COPD under A vs. G and AA vs. GG models in both Asian and Caucasian population.

Conclusion

The present meta-analysis suggests that HHIP rs13118928 SNP is significantly related with COPD susceptibility.

表1 纳入研究的基本特征
表2 纳入研究根据纽卡斯尔-渥太华量表的评估结果
图1 等位基因模型下亚洲人种和高加索人种亚组分析结果
表3 HHIP基因rs13118928单核苷酸多态性与慢性阻塞性肺疾病易感性的荟萃分析结果
图2 等位基因模型下的漏斗图结果
1
Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease[J]. Lancet, 2012, 379(9823): 1341-1351.
2
Zhu B, Wang Y, Ming J, et al. Disease burden of COPD in China:a systematic review[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 1353-1364.
3
Eisner MD, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement; Novel risk factors and the global burden of chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2010, 182(5): 693-718.
4
Larson RK, Barman ML, Kueppers F, et al. Genetic and environmental determinants of chronic obstructive pulmonary disease[J]. Ann Intern Med, 1970, 72(5): 627-632.
5
Molfino NA. Current thinking on genetics of chronic obstructive pulmonary disease[J]. Curr Opin Pulm Med, 2007, 13(2): 107-113.
6
Zhou X, Baron RM, Hardin M, et al. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP[J]. Hum Mol Genet, 2012, 21(6): 1325-1335.
7
Chuang PT, Kawcak T, McMahon AP. Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung[J]. Genes Dev, 2003, 17(3): 342-347.
8
McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling[J]. Curr Top Dev Biol, 2003, 53: 1-114.
9
Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD):identification of two major susceptibility loci[J]. PLoS Genet, 2009, 5(3): e1000421.
10
曾宪涛,刘 慧,陈 曦,等. Meta分析系列之四:观察性研究的质量评价工具[J]. 中国循证心血管医学杂志,2012, 4(4): 297-299.
11
Ryckman K, Williams SM. Calculation and use of the Hardy-Weinberg model in association studies [J]. Curr Protoc Hum Genet, 2008, doi: 10.1002/0471142905.hg0118s57.
12
Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses [J]. BMJ, 2003, 327(7414): 557-560.
13
成芳娟,关 键,任 侠,等. HHIP基因多态性与新疆哈萨克族慢性阻塞性肺疾病易感性的关系研究[J]. 中国全科医学,2017, 19: 2378-2382.
14
Zhang Z, Wang J, Zheng Z, et al. Genetic Variants in the Hedgehog Interacting Protein Gene Are Associated with the FEV1/FVC Ratio in Southern Han Chinese Subjects with Chronic Obstructive Pulmonary Disease[J]. Biomed Res Int, 2017, 2017: 2756726.
15
Xu G, Gao X, Zhang S, et al. Comparison of the role of HHIP SNPs in susceptibility to chronic obstructive pulmonary disease between Chinese Han and Mongolian populations [J]. Gene, 2017, 637: 50-56.
16
Korytina GF, Akhmadishina LZ, Viktorova EV, et al. IREB2, CHRNA5,CHRNA3, FAM13A & hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia[J]. Indian J Med Res, 2016, 144(6): 865-876.
17
Xie J, Wu H, Xu Y, et al. Gene susceptibility identification in a longitudinal study confirms new loci in the development of chronic obstructive pulmonary disease and influences lung function decline[J]. Respir Res, 2015, 16: 49.
18
Wang B, Zhou H, Yang J, et al. Association of HHIP polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population[J]. Gene, 2013, 531(1): 101-105.
19
Van Durme YM, Eijgelsheim M, Joos GF, et al. Hedgehog-interacting protein is a COPD susceptibility gene: the Rotterdam Study[J]. Eur Respir J, 2010, 36(1): 89-95.
20
Cho MH, McDonald ML, Zhou X, et al. Risk loci for chronic obstructive pulmonary disease:a genome-wide association study and meta-analysis[J]. Lancet Respir Med, 2014, 2(3): 214-225.
21
Cho MH, Castaldi PJ, Wan ES, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13[J]. Hum Mol Genet, 2012, 21(4): 947-957.
22
Ding Y, Yang D, Zhou L, et al. Variants in multiple genes polymorphism association analysis of COPD in the Chinese Li population[J]. Int J Chron Obstruct Pulmon Dis, 2015, 10:1455-1463.
23
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health[CPH] study); a national cross-sectional study [J]. Lancet, 2018, 391(10131): 1706-1717.
24
Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein[J]. Nature, 1999, 397(6720): 617-621.
25
Kim WJ, Oh YM, Lee JH, et al. Genetic variants in HHIP are associated with FEV1 in subjects with chronic obstructive pulmonary disease[J]. Respirology, 2013, 18(8): 1202-1209.
26
Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer [J]. Nat Rev Drug Discov, 2006, 5(12): 1026-1033.
27
Zhou X, Baron RM, Hardin M, et al. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP[J]. Hum Mol Genet, 2012, 21(6): 1325-1335.
28
Siedlinski M, Tingley D, Lipman PJ, et al. Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility[J]. Hum Genet, 2013, 132(4): 431-441.
29
Pillai SG, Kong X, Edwards LD, et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2010, 182(12): 1498-1505.
30
Egger M, Smith GD. Bias in location and selection of studies[J]. BMJ, 1998, 316(7124): 61-66.
[1] 杨薇, 郝霞, 朱冬振, 张劲柏, 田雪飞, 姚斌. 中医药治疗烧烫伤患者临床效果的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 419-426.
[2] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[3] 吴庆华, 冒勇, 闫效坤. AECOPD并发AKI的危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 529-531.
[4] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[5] 熊锋, 娄建丽. 慢性阻塞性肺疾病急性加重期预后的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 550-553.
[6] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[7] 林静, 陈芳, 刘小霞. COPD患者认知功能障碍影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 569-571.
[8] 张七妹, 麦宜准, 蒋浩波. 喘可治对慢性阻塞性肺疾病缓解期的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 578-580.
[9] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[10] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[11] 徐丽玲, 卢玉宝, 赵彦, 任利, 李姝艺, 符娟, 康玲, 汪青松, 尤再春. COPD管理云平台的构建及临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 481-484.
[12] 李海明, 刘鸿飞, 李俊. 血清脂蛋白酶水平与COPD患者骨骼肌质量减少的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 500-503.
[13] 王秀, 王义国. 乌司奴单抗治疗克罗恩病肛周瘘管的有效性和安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 514-519.
[14] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[15] 孙培培, 张二明, 时延伟, 赵春燕, 宋萍萍, 张硕, 张克, 周玉娇, 赵璨, 闫维, 吴蓉菊, 宋丽萍, 郭伟安, 马石头, 安欣华, 包曹歆, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病患病情况及相关危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 711-719.
阅读次数
全文


摘要