切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (05) : 573 -578. doi: 10.3877/cma.j.issn.1674-6902.2021.05.006

论著

沉默HIF-1α调控MAPK/ERK信号通路抑制NSCLC转移的分析
余治国1, 巩博1, 陆卫华1,(), 李鸣芳2   
  1. 1. 430014 武汉,中部战区总医院急诊科
    2. 430014 武汉,中部战区总医院肿瘤科
  • 收稿日期:2021-03-11 出版日期:2021-10-25
  • 通信作者: 陆卫华
  • 基金资助:
    湖北省卫健委科研项目(WJ2017F008)

Silencing HIF-1α regulates MAPK/ERK pathway and inhibits metastasis of NSCLC

Zhiguo Yu1, Bo Gong1, Weihua Lu1,(), Minfang Li2   

  1. 1. Emergency Department, Central Theater Command General Hospital, Wuhan 430014, China
    2. Oncology Department, Central Theater Command General Hospital, Wuhan 430014, China
  • Received:2021-03-11 Published:2021-10-25
  • Corresponding author: Weihua Lu
引用本文:

余治国, 巩博, 陆卫华, 李鸣芳. 沉默HIF-1α调控MAPK/ERK信号通路抑制NSCLC转移的分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 573-578.

Zhiguo Yu, Bo Gong, Weihua Lu, Minfang Li. Silencing HIF-1α regulates MAPK/ERK pathway and inhibits metastasis of NSCLC[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(05): 573-578.

目的

探讨HIF-1α在体内及体外对非小细胞肺癌(NSCLC)细胞转移的影响及其作用机制。

方法

采用实时荧光定量PCR(RT-qPCR)检测HIF-1α在癌旁正常组织、肺鳞癌组织(LUSC)、肺腺癌组织(LUAD)、A549细胞和HEB细胞中的表达量。上调HIF-1α表达后,通过MTT、细胞侵袭和Western blot实验检测过表达HIF-1α对A549细胞增殖、侵袭和EMT的影响。下调HIF-1α表达后,Western blot检测A549细胞ERK和p-ERK蛋白的表达量。THBQ激活MAPK/ERK通路后,分析A549细胞增殖、侵袭和EMT能力。将细胞株植入裸鼠体内,构建移植瘤模型,最后测量裸鼠移植瘤的体积和重量。

结果

HIF-1α在NSCLC组织的表达水平明显高于癌旁正常组织(P<0.05)。A549细胞中HIF-1α表达水平明显高于HEB细胞(P<0.01),过能够促进A549细胞的增殖和侵袭,N-cadherin蛋白表达量明显上升,E-cadherin蛋白表达量明显下降。下调HIF-1α能够抑制A549细胞内MAPK/ERK通路,且抑制了A549细胞的增殖、侵袭和EMT。下调HIF-1α使裸鼠移植瘤的重量和体积明显减小。

结论

沉默HIF-1α通过MAPK/ERK信号通路在体内及体外抑制NSCLC转移。

Objective

To investigate the effects of HIF-1α on metastasis of non-small cell lung cancer and its mechanism in vitro and in vivo.

Methods

Quantitative real-time PCR (RT-qPCR) was used to detect the expression of HIF-1αin normal paracancer tissues (Normal), lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), A549 celland HEB cell. HIF-1α expression was upregulated, and the effects of overexpression of HIF-1α on the proliferation, invasion, and EMT of A549 cells were detected by MTT, cell invasion, and Western blot. HIF-1α expression was down-regulated, ERK and p-ERK protein expressions in A549 cells were detected by Western blot. After THBQactivated the MAPK/ERK pathway, the proliferation, invasion and EMT abilities of A549 cells were analyzed. Cell lines were implanted into nude mice to construct a xenograft model. And the volume and weight of the xenograft tumor were measured.

Results

HIF-1α expression in non-small cell lung cancer tissues was significantly higher than that in adjacent normal tissues(P<0.05). The expression level of HIF-1α in A549 cells was significantly higher than that in HEB cells(P<0.01). Overexpression of HIF-1α promoted the proliferation and invasion of A549 cells, and the expression level of N-cadherin protein is significantly increased, while that of E-cadherin is significantly decreased. Down-regulation of HIF-1α inhibited the MAPK/ERK pathway in A549 cells and inhibited the proliferation, invasion and EMT of A549 cells. Downregulation of HIF-1α significantly reduced the weight and volume of transplanted tumors in nude mice.

Conclusion

Silencing HIF-1α inhibited metastasis of non-small cell lung cancer in vivo and in vitro via the MAPK/ERK signaling pathway.

表1 引物序列
图1 HIF-1α在NSCLC组织和细胞中表达上调;注:A:RT-qPCR检测HIF-1α在NSCLC组织和癌旁正常组织中的表达量;B:RT-qPCR检测HIF-1α在HEB和A549细胞中的表达量
图2 过表达HIF-1α促进A549细胞增殖、侵袭和EMT;注:A:RT-qPCR检测过表达HIF-1α后A549细胞中HIF-1α的表达量;B:MTT检测过表达HIF-1α对A549细胞增殖的影响;C:A549细胞的侵袭数目;D:细胞侵袭实验检测过表达HIF-1α对A549细胞侵袭的影响(×200);E:过表达HIF-1α对A549细胞EMT的影响;F:E-cadherin、N-cadherin蛋白的相对表达量
图3 下调HIF-1α抑制了A549细胞内MAPK/ERK信号通路;注:A:RT-qPCR检测下调HIF-1α后A549细胞中HIF-1α的表达量;B:Western blot检测下调HIF-1α对A549细胞MAPK/ERK信号通路的影响;C:p-ERK/ERK比值
图4 下调HIF-1α通过MAPK/ERK信号通路抑制A549细胞增殖、侵袭和EMT;注:A:Western blot检测TBHQ作用A549细胞后对MAPK/ERK信号通路的影响;B:MTT检测下调HIF-1α通过MAPK/ERK信号通路对A549细胞增殖的影响;C:A549细胞侵袭数目;D:细胞侵袭实验检测下调HIF-1α通过MAPK/ERK信号通路对A549细胞侵袭的影响(×200);E:Western blot检测下调HIF-1α通过MAPK/ERK信号通路对A549细胞EMT的影响;F:E-cadherin、N-cadherin蛋白的相对表达量
表2 移植瘤体积、重量比较(±s)
1
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
2
Lu H, Zhang H, Wei Y, et al. Ambient mass spectrometry for molecular diagnosis of lung cancer[J]. Analyst, 2019, 145(2): 313-320.
3
Zhong Y, Gao T, Yuan X, et al. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression[J]. Cancer Biol Therapy, 2018, 19(5): 407-415.
4
刘蕾,魏素菊. KRAS突变的非小细胞肺癌的研究进展[J]. 中国肺癌杂志2018, 21(5): 419-424.
5
侯宛昕,李和根,朱丽华. 中医药防治非小细胞肺癌术后复发转移概况[J]. 湖南中医杂志2014, 30(4): 183-186.
6
Rangel D, Rojas , Irmgard , et al. Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species.[J]. J Molecul Med, 2018, 96(12): 1395-1405.
7
刘瑞清. 缺氧诱导因子-1α参与肝纤维化形成机制研究进展[J]. 实用肝脏病杂志2021, 24(1): 145-148.
8
Khuc T, Hsu CWA, Sakamuru S, et al. Using β-lactamase and nanoLuc luciferase reporter gene assays to identify inhibitors of the HIF-1 signaling pathway[J]. Other, 2016, 1473: 23-31.
9
Lin MC, Lin JJ, Hsu CL, et al. GATA3 interacts with and stabilizes HIF-1α to enhance cancer cell invasiveness[J]. Oncogene, 2017, 36(30): 4243-4252.
10
Zhao Y, Wang XX, Wu W, et al. EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells[J]. Biochem Biophys Res Commun, 2019, 517(2): 201-209.
11
Hou P, Shi P, Jiang T, et al. DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer[J]. Br J Cancer, 2020, 122(5): 668-679.
12
赵志成,庄莉,贾长库,等. EGCG抑制肝癌细胞株HepG2增殖及HIF-1α/VEGF的表达[J]. 中国病理生理杂志2010, 26(4): 713-720.
13
唐静,贾昱娴,农丽,等. MALAT-1和HIF-1α在三阴型乳腺癌中表达及临床意义[J]. 重庆医学2019, 48(10): 28-31.
14
Wenming F, Tao X, Sanxiong H, et al. HIF-1α promotes the migration and invasion of hepatocellular carcinoma cells via the IL-8-NF-κB axis[J]. Cell Molecul Biol Lett, 2018, 23(1): 26-36.
15
Lai HH, Li JN, Wang MY, et al. HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis[J]. J Clin Invest, 2018, 128(2): 625-643.
16
焦言,杨文锋. 缺氧诱导因子-1与恶性肿瘤的相关性研究进展[J]. 中国实用医刊2018, 45(15): 125-128.
17
马苑,付秀华,王立红. 肿瘤缺氧微环境的研究进展[J]. 癌症进展2020, 18(2): 7-10+45.
18
Xu M, Zheng YL, Xie XY, et al. Sorafenib blocks the HIF-1α/VEGFA pathway, inhibits tumor invasion, and induces apoptosis in hepatoma cells[J]. DNA Cell Biol, 2014, 33(5): 275-281.
19
Zhang K, Han ES, Dellinger TH, et al. Cinnamon extract reduces VEGF expression via suppressing HIF-1α gene expression and inhibits tumor growth in mice[J]. Molecul Carcinogen, 2016, 56(2): 436-446.
20
Xiao H, Tong R, Ding C, et al. γ-H2AX promotes hepatocellular carcinoma angiogenesis via EGFR/HIF-1α/VEGF pathways under hypoxic condition[J]. Oncotarget, 2015, 6(4): 2180-2192.
21
Sun QY, Ding LW, Johnson K, et al. SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells[J]. Oncogen, 2019, 38(34): 6196-6210.
22
Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms[J]. Theranost, 2019, 9(15): 4461-4473.
23
Jiang XL, Gao JC, Jiang L, et al. [Expression and significance of MAPK/ERK in the specimens and cells of epithelial ovarian cancer][J]. Zhonghua Fu Chan Ke Za Zhi, 2019, 54(8): 541-547.
24
Costa RLB, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review[J]. Breast Cancer Res Treat, 2018, 169(3): 397-406.
25
Lin YT, Wang HC, Hsu YC, et al. Capsaicin induces autophagy and apoptosis in human nasopharyngeal carcinoma cells by downregulating the PI3K/AKT/mTOR pathway[J]. Int J Molecul Ences, 2017, 18(7): 1343-1355.
26
Dong P, Hao F, Dai S, et al. Combination therapy Eve and Pac to induce apoptosis in cervical cancer cells by targeting PI3K/AKT/mTOR pathways[J]. J Recept Sign Transd, 2018, 38(1): 83-88.
[1] 孙帼, 谢迎东, 徐超丽, 杨斌. 超声联合临床特征的列线图模型预测甲状腺乳头状癌淋巴结转移的价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 734-742.
[2] 康夏, 田浩, 钱进, 高源, 缪洪明, 齐晓伟. 骨织素抑制破骨细胞分化改善肿瘤骨转移中骨溶解的机制研究[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 329-339.
[3] 江艺, 张小进, 沈佳佳. 胆囊癌伴肝多发转移手术治疗(腹腔镜下胆囊癌切除+淋巴结清扫+肝Ⅴ、Ⅵ、Ⅶ段切除)[J]. 中华普通外科学文献(电子版), 2023, 17(06): 412-412.
[4] 李雄雄, 周灿, 徐婷, 任予, 尚进. 初诊导管原位癌伴微浸润腋窝淋巴结转移率的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 466-474.
[5] 唐旭, 韩冰, 刘威, 陈茹星. 结直肠癌根治术后隐匿性肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 16-20.
[6] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[7] 徐成, 王璐璐, 王少华. 洗脱液甲状腺球蛋白在甲状腺乳头状癌转移淋巴结中的应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 701-704.
[8] 袁育韬, 邢金琳, 谢克飞, 殷凯. CT征象及BRAFV600E基因突变与甲状腺乳头状癌中央区淋巴结转移的相关性[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 611-614.
[9] 肖体先, 刘骞, 宋京海. 乳房外Paget病脾转移一例报告[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 717-719.
[10] 杨红杰, 张智春, 孙轶. 直肠癌淋巴结转移诊断研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 512-518.
[11] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[12] 刘祺, 张凯, 李建男, 刘铜军. 结直肠癌肝转移生物治疗的现状及进展[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 415-419.
[13] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[14] 刘代江, 蒋俊艳, 万晓强, 马莎英. 结直肠癌肝转移患者生存状况及预后影响因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 284-288.
[15] 孔凡彪, 杨建荣. 肝脏基础疾病与结直肠癌肝转移之间关系的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 818-822.
阅读次数
全文


摘要