切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2023, Vol. 16 ›› Issue (03) : 329 -334. doi: 10.3877/cma.j.issn.1674-6902.2023.03.006

论著

基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物
谭玲芳, 周克兵()   
  1. 421000 衡阳,南华大学衡阳医学院附属南华医院肾内科
  • 收稿日期:2023-01-23 出版日期:2023-06-25
  • 通信作者: 周克兵

Identification of biomarkers associated with diagnosis of bronchial asthma based on integrated bioinformatics analysis

Lingfang Tan, Kebing Zhou()   

  1. Department of Nephrology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, China
  • Received:2023-01-23 Published:2023-06-25
  • Corresponding author: Kebing Zhou
引用本文:

谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.

Lingfang Tan, Kebing Zhou. Identification of biomarkers associated with diagnosis of bronchial asthma based on integrated bioinformatics analysis[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2023, 16(03): 329-334.

目的

为寻找支气管哮喘患者潜在的诊断生物标志物,基于生物信息学分析方法。

方法

从基因表达芯片(GEO)数据库获得以哮喘患者和健康志愿者为试验对象的GSE41861和GSE64913支气管上皮细胞基因表达数据集。通过对高通量芯片数据进行提取,结合GEO2R、omics Bean、STRING等网站或软件筛选差异表达基因,将二者的共同差异基因排列成蛋白质-蛋白质互相作用(PPI)网络,从而找到关键基因。在DAVID网站中进行基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路富集分析,以探索这些基因的功能作用。最后应用ROC曲线分析这些基因对支气管哮喘的诊断价值。

结果

GSE41861和GSE64913数据集中共筛选出11个关键差异基因。GO富集分析显示,差异基因主要与内肽酶、肽酶的活性及调节相关,KEGG结果显示上述差异基因涉及到的信号通路为补体及凝血级联反应。根据ROC曲线显示CEACAM5、GRP、SCGB3A1、KCNA1诊断哮喘的准确度较高(AUC值>0.8)。

结论

哮喘的生物信息学分析结果为探索哮喘的潜在发病机制和关键基因提供证据。其中CEACAM5、GRP、SCGB3A1、KCNA1与哮喘的临床诊断具有意义。

Objective

To find potential diagnostic biomarkers for patients with bronchial asthma.

Methods

this study used bioinformatics analysis to obtain the GSE41861 and GSE64913 bronchial epithelial cell gene expression datasets from the Gene Expression Microarray (GEO) database with bronchial asthma patients and healthy volunteers. The high-throughput microarray data were extracted and differentially expressed genes were screened by websites or software such as GEO2R, omics Bean and STRING. The common differential genes between the two were aligned into a protein-protein interaction (PPI) network to find the key genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genomes and Genomes (KEGG) pathway enrichment analysis were also performed in the DAVID website to explore the functional roles of these genes. Finally, ROC curves were applied to analyze the diagnostic value of these genes for bronchial asthma.

Results

The results showed that 11 common differential genes were screened in the GSE41861 and GSE64913 datasets. GO enrichment analysis showed that the differential genes were mainly associated with the activity and regulation of endopeptidase as well as peptidase. KEGG results showed that the above differential genes were involved in the signaling pathways of complement and coagulation cascade. The ROC curves showed that CEACAM5, GRP, SCGB3A1, and KCNA1 were highly accurate in the diagnosis of asthma (AUC values>0.8).

Conclusion

the results of bioinformatics analysis of asthma can provide supporting evidence to explore the potential pathogenesis and key genes of asthma. Among them, CEACAM5, GRP, SCGB3A1, and KCNA1 were correlated with the clinical diagnosis of asthma.

图1 共同差异基因GO富集分析
表1 共同差异基因的GO富集分析结果
表2 共同差异基因的KEGG富集分析结果
图2 ROC曲线
1
Cevhertas L, Ogulur I, Maurer DJ, et al. Advances and recent developments in asthma in 2020[J]. Allergy, 2020, 75(12): 3124-3146.
2
王东辉,张 方. 重症支气管哮喘的诊治进展[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(5): 638-641.
3
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41(Database issue): D991-995.
4
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
5
Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284-287.
6
Ntontsi P, Photiades A, Zervas E, et al. Genetics and epigenetics in asthma[J]. Int J Mol Sci, 2021, 22(5): 2412.
7
Conway EM. Complement-coagulation connections[J]. Blood Coagulation & Fibrinolysis, 2018, 29(3): 243-251.
8
Berkowitz S, Chapman J, Dori A, et al. Complement and coagulation system crosstalk in synaptic and neural conduction in the central and peripheral nervous systems[J]. Biomedicines, 2021, 9(12): 1950.
9
Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis[J]. Nat Immunol, 2010, 11(9): 785-797.
10
Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches[J]. Nat Med, 2012, 18(5): 716-725.
11
Alevy YG, Patel AC, Romero AG, et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition[J]. J Clin Invest, 2012, 122(12): 4555-4568.
12
Hauber HP, Zabel P. Emerging mucus regulating drugs in inflammatory and allergic lung disease[J]. Inflamm Allergy Drug Targets, 2008, 7(1): 30-34.
13
Barretto KT, Swanson CM, Nguyen CL, et al. Control of cytokine-driven eosinophil migratory behavior by TGF-beta-induced protein (TGFBI) and periostin[J]. PLoS One, 2018, 13(7): e0201320.
14
Jia G, Erickson RW, Choy DF, et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients[J]. J Allergy Clin Immunol, 2012, 130(3): 647-654.
15
Zhao A, Yang Z, Sun R, et al. SerpinB2 Is Critical to Th2 Immunity against Enteric Nematode Infection[J]. J Immunol, 2013, 190(11): 5779-5787.
16
Schroder WA, Le TTT, Major L, et al. A physiological function of inflammation-associated SerpinB2 is regulation of adaptive immunity[J]. J Immunol, 2010, 184(5): 2663-2670.
17
Gupta A, Rosato AJ, Cui F. Vaccine candidate designed against carcinoembryonic antigen-related cell adhesion molecules using immunoinformatics tools[J]. J Biomol Struct Dyn, 2021, 39(16): 6084-6098.
18
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis[J]. Cancer Metastasis Rev, 2013, 32(3-4): 643-671.
19
Klaile E, Klassert TE, Scheffrahn I, et al. Carcinoembryonic antigen (CEA)-related cell adhesion molecules are co-expressed in the human lung and their expression can be modulated in bronchial epithelial cells by non-typable Haemophilus influenzae, Moraxella catarrhalis, TLR3, and type Ⅰ and Ⅱ interferons[J]. Respir Res, 2013, 14: 85.
20
Nie X, Wei J, Hao Y, et al. Consistent biomarkers and related pathogenesis underlying asthma revealed by systems biology approach[J]. Int J Mol Sci, 2019, 20(16): E4037.
21
Humbles AA, Lu B, Nilsson CA, et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma[J]. Nature, 2000, 406(6799): 998-1001.
22
Ali H, Panettieri RA. Anaphylatoxin C3a receptors in asthma[J]. Respir Res, 2005, 6: 19.
23
Ulrich S, Nicolls MR, Taraseviciene L, et al. Increased regulatory and decreased CD8+ cytotoxic T cells in the blood of patients with idiopathic pulmonary arterial hypertension[J]. Respiration, 2008, 75(3): 272-280.
24
Holgate ST, Djukanovic R, Casale T, et al. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy[J]. Clin Exp Allergy, 2005, 35(4): 408-416.
25
Khan MA, Nicolls MR, Surguladze B, et al. Complement components as potential therapeutic targets for asthma treatment[J]. Respir Med, 2014108(4): 543-549.
26
Lach E, Haddad EB, Gies JP. Contractile effect of bombesin on guinea pig lung in vitro: involvement of gastrin-releasing peptide-preferring receptors[J]. Am J Physiol, 1993, 264(1 Pt 1): L80-86.
27
Qin XQ, Qu X. Extraintestinal roles of bombesin-like peptides and their receptors: lung[J]. Curr Opin Endocrinol Diabetes Obes, 2013, 20(1): 22-26.
28
Bingle CD, Seal RL, Craven CJ. Systematic nomenclature for the PLUNC/PSP/BSP30/SMGB proteins as a subfamily of the BPI fold-containing superfamily[J]. Biochem Soc Trans, 2011, 39(4): 977-983.
29
Bingle L, Bingle CD. Distribution of human PLUNC/BPI fold-containing (BPIF) proteins[J]. Biochemical Society Transactions, 2011, 39(4): 1023-1027.
30
Fukuoka A, Matsushita K, Morikawa T, et al. Human cystatin SN is an endogenous protease inhibitor that prevents allergic rhinitis[J]. J Allergy Clin Immunol, 2019, 143(3): 1153-1162.
31
Paulhus K, Ammerman L, Glasscock E. Clinical spectrum of KCNA1 mutations: new insights into episodic ataxia and epilepsy comorbidity[J]. Int J Mol Sci, 2020, 21(8): E2802.
32
Yin XM, Lin JH, Cao L, et al. Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene[J]. Hum Mol Genet, 2018, 27(4): 625-637.
33
Milde-Langosch K, Röder H, Andritzky B, et al. The role of the AP-1 transcription factors c-Fos, FosB, Fra-1 and Fra-2 in the invasion process of mammary carcinomas[J]. Breast Cancer Res Treat, 2004, 86(2): 139-152.
34
Patterson JR, Kim EJ, Goudreau JL, et al. FosB and ΔFosB expression in brain regions containing differentially susceptible dopamine neurons following acute neurotoxicant exposure[J]. Brain Res, 2016, 1649(Pt A): 53-66.
35
Schneider AK, Cama G, Ghuman M, et al. Sprouty 2, an early response gene regulator of FosB and mesenchymal stem cell proliferation during mechanical loading and osteogenic differentiation[J]. J Cell Biochem, 2017, 118(9): 2606-2614.
[1] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[2] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[3] 张圣平, 邓琼, 张颖, 张建文, 梁辉, 王铸. 孤儿核受体HNF4α在肾透明细胞癌中的表达及意义[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 627-632.
[4] 唐国军, 洪余德, 赵崇玉, 李辽源. 基于TCGA数据库Wnt相关长链非编码RNA构建肾乳头状细胞癌预后模型[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 270-275.
[5] 邱静, 黄庆. HJURP在肺腺癌组织中高表达并与患者不良预后相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 495-499.
[6] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[7] 刘汶睿, 高丽娜, 于书娴, 周建刚. 支气管哮喘患者血清IL-27与IFN-γ及肺功能相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 224-226.
[8] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[9] 张维志, 刘连新. 基于生物信息学分析IPO7在肝癌中的表达及意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 694-701.
[10] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[11] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[12] 王蕾, 姜岱山, 朱保锋, 贾寒雨, 沈君华, 张毅. 基于GEO数据库的热射病神经损伤相关基因的生物信息学分析[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 76-84.
[13] 许航, 崔宇韬, 任广凯, 刘贺, 王雁冰, 彭传刚, 吴丹凯. 骨质疏松症关键基因的筛选及生物信息学分析[J]. 中华老年骨科与康复电子杂志, 2023, 09(01): 18-22.
[14] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要