切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (01) : 148 -151. doi: 10.3877/cma.j.issn.1674-6902.2024.01.033

综述

介入支气管镜在肺部疾病诊断和治疗中的应用
朱斯悦1, 张晓莹1,(), 严玉茹1, 陈绯1   
  1. 1. 200001 上海,上海交通大学附属仁济医院护理部
  • 收稿日期:2023-12-13 出版日期:2024-02-25
  • 通信作者: 张晓莹

Application of interventional bronchoscopy in diagnosis and treatment of pulmonary diseases

Siyue Zhu, Xiaoying Zhang(), Yuru Yan   

  • Received:2023-12-13 Published:2024-02-25
  • Corresponding author: Xiaoying Zhang
引用本文:

朱斯悦, 张晓莹, 严玉茹, 陈绯. 介入支气管镜在肺部疾病诊断和治疗中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 148-151.

Siyue Zhu, Xiaoying Zhang, Yuru Yan. Application of interventional bronchoscopy in diagnosis and treatment of pulmonary diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(01): 148-151.

对于可疑的恶性肺部病变发生在肺部的外围区域,因此改进的支气管镜导航至目标病变对于诊断至关重要。支气管镜检查,特别是柔性支气管镜检查,是气道检查、气道病变诊断、治疗性气道分泌物抽吸以及经支气管穿刺活检以诊断肺实质性疾病的主要工具[1]。该领域迅猛发展,引入了多种新的微创支气管镜方法和技术,适用于癌症、慢性肺疾病,如慢性阻塞性肺病、哮喘和肺气肿以及良性气道疾病的患者。本文对支气管镜检查在诊断和治疗的进展进行综述,报道如下。

1
Zöllner F. Gustav Killian[J]. Arch Otolaryngol, 1965, 82(6): 656-659.
2
王洪武,金发光. 晚期非小细胞肺癌多域整合治疗策略[J/CD]. 中华肺部疾病杂志(电子版), 2022, 15(4): 457-461.
3
De Koning HJ, Van Der aalst CM, De Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial[J]. N Engl J Med, 2020, 382(6): 503-513.
4
Zuniga PVS, Vakil E, Molina S, et al. Sensitivity of radial endobronchial ultrasound-guided bronchoscopy for lung cancer in patients with peripheral pulmonary lesions: an updated meta-analysis [J]. Chest, 2020, 157(4): 994-1011.
5
Minezawa T, Okamura T, Yatsuya H, et al. Bronchus sign on thin-section computed tomography is a powerful predictive factor for successful transbronchial biopsy using endobronchial ultrasound with a guide sheath for small peripheral lung lesions: a retrospective observational study [J]. BMC Med Imaging, 2015, 15: 21.
6
Chen A, Chenna P, Loiselle A, et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience[J]. Ann Am Thorac Soc, 2014, 11(4): 578-582.
7
Gildea TR. Lung lesion localization and the diagnostic drop[M]. American Thoracic Society, 2016: 1450-1452.
8
Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically[J]. Chest, 2004, 126(3): 959-965.
9
Memoli JSW, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule [J]. Chest, 2012, 142(2): 385-393.
10
Zhang SJ, Zhang M, Zhou J, et al. Comparison of radial endobronchial ultrasound with a guide sheath and with distance by thin bronchoscopy for the diagnosis of peripheral pulmonary lesions: a prospective randomized crossover trial [J]. J Thorac Dis, 2016, 8(11): 3112.
11
Yarmus LB, Mallow C, Pastis N, et al. First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: a multicenter pilot study [J]. Respiration, 2019, 98(6): 527-533.
12
Reynisson PJ, Leira HO, Hernes TN, et al. Navigated bronchoscopy:a technical review [J]. J Bronchology & Interv Pulmonol, 2014, 21(3): 242-264.
13
Qian K, Krimsky WS, Sarkar SA, et al. Efficiency of electromagnetic navigation bronchoscopy and virtual bronchoscopic navigation[J]. Ann Thorac Surg, 2020, 109(6): 1731-1740.
14
Folch EE, Labarca G, Ospina-Delgado D, et al. Sensitivity and safety of electromagnetic navigation bronchoscopy for lung cancer diagnosis: systematic review and meta-analysis[J]. Chest, 2020, 158(4): 1753-1769.
15
Gex G, Pralong JA, Combescure C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis[J]. Respiration, 2014, 87(2): 165-176.
16
Zhang W, Chen S, Dong X, et al. Meta-analysis of the diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules[J]. J Thorac Dis, 2015, 7(5): 799-809.
17
Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial[J]. Thorax, 2011, 66(12): 1072-1077.
18
Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial [J]. Am J Respir Crit Care Med, 2013, 188(3): 327-333.
19
Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study[J]. J Thorac Oncol, 2019, 14(3): 445-458.
20
Asano F, Eberhardt R, Herth FJ. Virtual bronchoscopic navigation for peripheral pulmonary lesions[J]. Respiration, 2014, 88(5): 430-440.
21
Chen A, Pastis N, Furukawa B, et al. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy[J]. Chest, 2015, 147(5): 1275-1281.
22
Tachihara M, Ishida T, Kanazawa K, et al. A virtual bronchoscopic navigation system under X-ray fluoroscopy for transbronchial diagnosis of small peripheral pulmonary lesions[J]. Lung Cancer, 2007, 57(3): 322-327.
23
Asahina H, Yamazaki K, Onodera Y, et al. Transbronchial biopsy using endobronchial ultrasonography with a guide sheath and virtual bronchoscopic navigation[J]. Chest, 2005, 128(3): 1761-1765.
24
Asano F, Matsuno Y, Tsuzuku A, et al. Diagnosis of peripheral pulmonary lesions using a bronchoscope insertion guidance system combined with endobronchial ultrasonography with a guide sheath[J]. Lung Cancer, 2008, 60(3): 366-373.
25
Aboudara M, Roller L, Rickman O, et al. Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: initial experience with a novel adjunct[J]. Respiration, 2020, 25(2): 206-213.
26
Katsis J, Roller L, Lester M, et al. High accuracy of digital tomosynthesis-guided bronchoscopic biopsy confirmed by intraprocedural computed tomography[J]. Respiration, 2021, 100(3): 214-221.
27
Zheng X, Xie F, Li Y, et al. Ultrathin bronchoscope combined with virtual bronchoscopic navigation and endobronchial ultrasound for the diagnosis of peripheral pulmonary lesions with or without fluoroscopy: A randomized trial[J]. Thoracic Cancer, 2021, 12(12): 1864-1872.
28
Tachihara M, Tamura D, Kiriu T, et al. Bronchoscopy using virtual navigation and endobronchial ultrasonography with a guide sheath (EBUS-GS) with or without fluoroscopy for peripheral pulmonary lesions[J]. Kobe J Med Sci, 2017, 63(4): E99-E104.
29
Setser R, Chintalapani G, Bhadra K, et al. Cone beam CT imaging for bronchoscopy: a technical review [J]. J Thorac Dis, 2020, 12(12): 7416-7428.
30
Yu KL, Yang SM, Ko HJ, et al. Efficacy and safety of cone-beam computed tomography-derived augmented fluoroscopy combined with endobronchial ultrasound in peripheral pulmonary lesions[J]. Respiration, 2021, 100(6): 538-546.
31
Cheng GZ, Liu L, Nobari M, et al. Cone beam navigation bronchoscopy:the next frontier[J]. J Thorac Dis, 2020, 12(6): 3272-3278.
32
Kheir F, Thakore SR, Uribe Becerra JP, et al. Cone-beam computed tomography-guided electromagnetic navigation for peripheral lung nodules[J]. Respiration, 2021, 100(1): 44-51.
33
Pritchett MA, Schampaert S, De Groot JA, et al. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules[J]. J Bronchology Interv Pulmonol, 2018, 25(4): 274-282.
34
Verhoeven RL, Fütterer JJ, hoefsloot W, et al. Cone-beam CT image guidance with and without electromagnetic navigation bronchoscopy for biopsy of peripheral pulmonary lesions[J]. J Bronchology Interv pulmonol, 2021, 28(1): 60-69.
35
Casal RF, Sarkiss M, Jones AK, et al. Cone beam computed tomography-guided thin/ultrathin bronchoscopy for diagnosis of peripheral lung nodules: a prospective pilot study[J]. J Thorac Dis, 2018, 10(12): 6950-6959.
36
Hummel JP, Mayse ML, Dimmer S, et al. Physiologic and histopathologic effects of targeted lung denervation in an animal model[J]. J Appl Physiol, 2019, 126(1): 67-76.
37
Koegelenberg CFN, Theron J, Slebos DJ, et al. Antimuscarinic bronchodilator response retained after bronchoscopic vagal denervation in chronic obstructive pulmonary disease patients[J]. Respiration, 2016, 92(1): 58-60.
38
Slebos DJ, Klooster K, Koegelenberg CF, et al. Targeted lung denervation for moderate to severe COPD: a pilot study[J]. Thorax, 2015, 70(5): 411-419.
39
Valipour A, Asadi S, Pison C, et al. Long-term safety of bilateral targeted lung denervation in patients with COPD[J]. Int J Chron Obstruct pulmon Dis, 2018, 13: 2163-2172.
40
Valipour A, Shah PL, Pison C, et al. Safety and dose study of targeted lung denervation in moderate/severe COPD patients[J]. Respiration, 2019, 98(4): 329-339.
41
Castro M, Rubin AS, Laviolette M, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial[J]. Am J Respir Crit Care Med, 2010, 181(2): 116-124.
42
Chupp G, Laviolette M, Cohn L, et al. Long-term outcomes of bronchial thermoplasty in subjects with severe asthma: a comparison of 3-year follow-up results from two prospective multicentre studies[J]. Eur Respir J, 2017, 50(4): 1750017.
43
Hutchinson JP, Fogarty AW, Mckeever TM, et al. In-hospital mortality after surgical lung biopsy for interstitial lung disease in the United States. 2000 to 2011[J]. Am J Respir Crit Care Med, 2016, 193(10): 1161-1167.
44
Sheth JS, Belperio JA, Fishbein MC, et al. Utility of transbronchial vs surgical lung biopsy in the diagnosis of suspected fibrotic interstitial lung disease[J]. Chest, 2017, 151(2): 389-399.
45
Sethi J, Ali MS, Mohananey D, et al. Are transbronchial cryobiopsies ready for prime time?[J]. J Bronchology Interv Pulmonol, 2019, 26(1): 22-32.
46
Maldonado F, Danoff SK, Wells AU, et al. Transbronchial cryobiopsy for the diagnosis of interstitial lung diseases: CHEST guideline and expert panel report[J]. Chest, 2020, 157(4): 1030-1042.
47
Johannson KA, Marcoux VS, Ronksley PE, et al. Diagnostic yield and complications of transbronchial lung cryobiopsy for interstitial lung disease. A systematic review and metaanalysis[J]. Ann Am Thorac Soc, 2016, 13(10): 1828-1838.
48
Ravaglia C, Bonifazi M, Wells AU, et al. Safety and diagnostic yield of transbronchial lung cryobiopsy in diffuse parenchymal lung diseases: a comparative study versus video-assisted thoracoscopic lung biopsy and a systematic review of the literature[J]. Respiration, 2016, 91(3): 215-227.
49
Avasarala SK, Wells AU, Colby TV, et al. Transbronchial cryobiopsy in interstitial lung diseases: state-of-the-art review for the interventional pulmonologist[J]. J Bronchology Interv Pulmonol, 2021, 28(1): 81-92.
50
Yarmus LB, Semaan RW, Arias SA, et al. A randomized controlled trial of a novel sheath cryoprobe for bronchoscopic lung biopsy in a porcine model[J]. Chest, 2016, 150(2): 329-336.
51
Berim IG, Saeed AI, Awab A, et al. Radial probe ultrasound-guided cryobiopsy[J]. J Bronchology Intervl Pulmonol, 2017, 24(2): 170-173.
52
Zhou G, Ren Y, Li J, et al. Safety and diagnostic efficacy of cone beam computed tomography-guided transbronchial cryobiopsy for interstitial lung disease: a cohort study[J]. Eur Respir J, 2020, 56(2): 2000724.
53
Hariri LP, Adams DC, Wain JC, et al. Endobronchial optical coherence tomography for low-risk microscopic assessment and diagnosis of idiopathic pulmonary fibrosis in vivo[J]. Am J Respir Crit Care Med, 2018, 197(7): 949-952.
[1] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[2] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[3] 陈华萍, 陈晓龙, 胡明冬. 难治性哮喘的发病机制及诊治进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 144-147.
[4] 张蕊, 李敏, 饶建玲. 肺癌患者癌因性疲乏现状及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 111-114.
[5] 王蓉蓉, 鲁静, 狄守印, 王丽娇, 岳彩迎, 张静, 陈佩瑶. 球囊呼吸训练仪与床旁走步机对肺癌VATS围术期肺康复的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 874-876.
[6] 陈艳, 王安康, 梁风玲, 黄垂志, 陈山. DCE-MRI在肺癌BACE疗效判断中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 871-873.
[7] 顾兴, 张庭秀, 胡绳, 马李杰, 肖贞良. 胸苷激酶1在肺癌性胸腔积液及结核性胸膜炎中的表达[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 789-792.
[8] 任洁, 檀崇斌, 张振华, 刘晨露. PD-1抑制剂对肺癌治疗致甲状腺相关病变的影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 784-788.
[9] 梁开地, 缑文斌, 莫居容. 肺癌组织中细胞角蛋白18的表达及与预后的相关性[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 688-690.
[10] 刘文龙, 王杰, 彭杰, 李纯, 翟飞. 血清PLR与FIB对肺癌术后预后的预测意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 682-684.
[11] 矫珺, 程萌, 矫春峰. 改良呼吸康复训练对肺癌肺叶切除术后呼吸功能和生活质量的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 709-711.
[12] 高嘉营, 金发光. 肺癌自身抗体在肺癌诊断中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 739-741.
[13] 蒙姣姣, 胡刚, 欧阳涣堃. 肺癌术前淋巴结转移及MWA手术效果预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 547-549.
[14] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[15] 徐欣轶, 薛蓓, 蒋莉, 陈慧. NRI联合CFS评分对肺癌术后机械通气的预测分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 358-360.
阅读次数
全文


摘要