切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (02) : 195 -200. doi: 10.3877/cma.j.issn.1674-6902.2024.02.005

论著

根据转录组学分析奥希替尼获得性耐药机制的研究
张剑1, 卢从华1, 李江华1, 林采余1, 吴迪1, 王治国1, 聂乃夫1, 何勇1, 李力1,()   
  1. 1. 400042 重庆,陆军(第三)军医大学陆军特色医学中心呼吸与危重症医学科
  • 收稿日期:2024-01-11 出版日期:2024-04-25
  • 通信作者: 李力
  • 基金资助:
    国家自然科学基金资助项目(82272908)

Transcriptomics-based exploration of the mechanism of acquired resistance to Osimertinib

Jian Zhang1, Conghua Lu1, Jianghua Li1, Caiyu Lin1, Di Wu1, Zhiguo Wang1, Naifu Nie1, Yong He1, Li Li1,()   

  1. 1. Department of Respiratory and Critical Care Medicine, Army characteristic Medical Center of PLA, Army Medical University, Chongqing 400042, China
  • Received:2024-01-11 Published:2024-04-25
  • Corresponding author: Li Li
引用本文:

张剑, 卢从华, 李江华, 林采余, 吴迪, 王治国, 聂乃夫, 何勇, 李力. 根据转录组学分析奥希替尼获得性耐药机制的研究[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 195-200.

Jian Zhang, Conghua Lu, Jianghua Li, Caiyu Lin, Di Wu, Zhiguo Wang, Naifu Nie, Yong He, Li Li. Transcriptomics-based exploration of the mechanism of acquired resistance to Osimertinib[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(02): 195-200.

目的

根据转录组测序技术分析介导肺癌奥希替尼耐药的信号通路,发现潜在干预靶点。

方法

体外构建肺癌奥希替尼一线/二线治疗模式下配对的敏感/耐药细胞株,采用高通量测序技术检测耐药前后细胞转录本表达量并使用R-package CORNAS筛选差异表达基因,借助Venny在线工具分析两组配对细胞株差异表达基因的交集,运用DAVID Bioinformatics Resources数据库分别对两种耐药模式下共有差异基因和特有差异基因进行京都基因与基因组百科全书(kyoto Encyclopedia of Genes and Genomes, KEGG)信号通路和基因本体(gene ontology, GO)功能富集分析。采用STRING 12.0数据库分析关键通路富集基因相互作用关系及靶点分子,借助chiplot在线工具绘制分子相互作用网络图。

结果

两组配对细胞株共有差异表达基因显著富集在Cell Cycle通路,一线治疗耐药特有差异基因富集在Cell Cycle和Ribosome biogenesis in eukaryotes通路,二线治疗耐药特有差异基因富集在MAPK signaling通路;GO富集分析发现共有差异表达基因参与cell division,分子功能是ATP binding,一、二线治疗耐药特有差异表达基因分别参与了rRNA processing和inflammatory response生物过程,主要分子功能分别是RNA binding和Protein binding;共筛选出5种关键靶点分子,包括CCNB1(共有)、CDC25A和NOP56(一线耐药特有)、JUN和MYC(二线耐药特有)。

结论

奥希替尼一线或二线治疗模式下共同及特有的潜在获得性耐药机制,为克服奥希替尼耐药提供潜在的治疗靶点。

Objective

To explore the signaling pathways mediating Osimertinib resistance in lung cancer based on transcriptome sequencing technology and to identify potential targets for intervention.

Methods

In vitro, we constructed paired sensitive/resistant lung cancer cell lines under the first/second line treatment modes of Osimertinib, detected the expression of cell transcripts before and after drug resistance by high-throughput sequencing and screened the differentially expressed genes by R-package CORNAS, analyzed the intersection of differentially expressed genes between the two groups of paired cell lines with the help of Venny online tool, and using the DAVID Bioinformatics Resources database to perform kyoto Encyclopedia of Genes and Genomes(KEGG) signaling pathway and gene ontology(GO) function enrichment analysis on the common and unique differentially expressed genes in two drug-resistant modes, respectively. Finally, the STRING 12.0 database was used to analyze the key pathway enriched gene interactions and target molecules, and the molecular interaction network was mapped with the help of chiplot online tool.

Results

The shared differentially expressed genes of the two paired cell lines were significantly enriched in the Cell Cycle pathway, the first-line treatment resistance-specific differentially expressed genes were enriched in the Cell Cycle and Ribosome biogenesis in eukaryotes pathway, and the second-line treatment resistance-specific differentially expressed genes were enriched in the MAPK signaling pathway; GO enrichment analysis revealed that shared differentially expressed genes were involved in cell division, and their molecular function was ATP binding, while first- and second-line treatment resistance-specific differentially expressed genes were involved in rRNA processing and inflammatory response, and their main molecular functions were RNA binding and Protein binding, respectively; Five key target molecules were screened, including CCNB1 (common), CDC25A and NOP56 (first-line drug resistance-specific), JUN and MYC (second-line drug resistance-specific).

Conclusions

The study identified potential acquired resistance mechanisms common and specific to first-or second-line treatment modalities of Osimertinib, providing potential therapeutic targets for overcoming Osimertinib resistance.

图1 交集(A)DEGs和一线、二线(B、C)特有DEGs KEGG富集通路气泡图
图2 交集(A)和一线(B)、二线(C)特有DEGs GO功能富集三合一图
图3 交集(A)DEGs和一线(B、C)、二线(D)特有DEGs关键分子网络互作图
1
徐天亮,程干思,吴亚平,等. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J/CD]. 中华肺部疾病杂志(电子版), 2023, 16(4): 520-522.
2
Cheng Y, He Y, Li W, et al. Osimertinib versus comparator EGFR TKI as first-line treatment for EGFR-Mutated advanced NSCLC: FLAURA China, a randomized study[J]. Target Oncol, 2021, 16(2): 165-176.
3
Mok TS, Wu YL, Ahn MJ, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer[J]. N Engl J Med, 2017, 376(7): 629-640.
4
Elkrief A, Makhnin A, Moses KA, et al. Brief report: Combination of osimertinib and dacomitinib to mitigate primary and acquired resistance in EGFR-Mutant lung adenocarcinomas[J]. Clin Cancer Res, 2023, 29(8): 1423-1428.
5
Chamorro DF, Cardona AF, Rodríguez J, et al. Genomic landscape of primary resistance to osimertinib among hispanic patients with EGFR-mutant non-small cell lung cancer (NSCLC): Results of an observational longitudinal cohort study[J]. Target Oncol, 2023, 18(3): 425-440.
6
Li X, Wang S, Li B, et al. BIM Deletion polymorphism confers resistance to osimertinib in EGFR T790M lung cancer: a case report and literature review[J]. Target Oncol, 2018, 13(4): 517-523.
7
Isobe K, Yoshizawa T, Sekiya M, et al. Quantification of BIM mRNA in circulating tumor cells of osimertinib-treated patients with EGFR mutation-positive lung cancer[J]. Respir Investig, 2021, 59(4): 535-544.
8
Kwon CS, Lin HM, Crossland V, et al. Non-small cell lung cancer with EGFR exon 20 insertion mutation: a systematic literature review and meta-analysis of patient outcomes[J]. Curr Med Res Opin, 2022, 38(8): 1341-1350.
9
Lazzari C, Gregorc V, Karachaliou N, et al. Mechanisms of resistance to osimertinib[J]. J Thorac Dis, 2020, 12(5): 2851-2858.
10
Ríos-Hoyo A, Moliner L, Arriola E. Acquired mechanisms of resistance to osimertinib-the next challenge[J]. Cancers (Basel), 2022, 14(8): 1931.
11
Oxnard GR, Hu Y, Mileham KF, et al. Assessment of resistance mechanisms and clinical implications in patients with EGFR T790M-positive lung cancer and acquired resistance to osimertinib[J]. JAMA Oncol, 2018, 4(11): 1527-1534.
12
Yang Z, Yang N, Ou Q, et al. Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients[J]. Clin Cancer Res, 2018, 24(13): 3097-3107.
13
Le X, Puri S, Negrao MV, et al. Landscape of EGFR-dependent and-independent resistance mechanisms to osimertinib and continuation therapy beyond progression in EGFR-mutant NSCLC[J]. Clin Cancer Res, 2018, 24(24): 6195-6203.
14
Leonetti A, Sharma S, Minari R, et al. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer[J]. Br J Cancer, 2019, 121(9): 725-737.
15
Mehlman C, Cadranel J, Rousseau-Bussac G, et al. Resistance mechanisms to osimertinib in EGFR-mutated advanced non-small-cell lung cancer: A multicentric retrospective French study[J]. Lung Cancer, 2019, 137: 149-156.
16
Nie N, Li J, Zhang J, et al. First-Line Osimertinib in patients with EGFR-mutated non-small cell lung cancer: Effectiveness, resistance mechanisms, and prognosis of different subsequent treatments[J]. Clin Med Insights Oncol, 2022, 16: 11795549221134735.
17
Kim D, Pertea G, Trapnell C, et al. TopHat 2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36.
18
Marioni JC, Mason CE, Mane SM, et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays[J]. Genome Res, 2008, 18(9): 1509-1517.
19
Zhao S, Zhang D, Liu S, et al. The roles of NOP56 in cancer and SCA36[J]. Pathol Oncol Res, 2023, 29: 1610884.
20
Hong H, Luo B, Qin Y, et al. RNA-seq and integrated network analysis reveals the hub genes and key pathway of paclitaxel inhibition on Adriamycin resistant diffuse large B cell lymphoma cells[J]. Bioengineered, 2022, 13(3): 7607-7621.
21
Tong X, Zhang R, Sun R, et al. Disclosing potential therapeutic targets associated with osimertinib resistance in the non-small cell lung cancer cell line H1975[J]. Anticancer Res, 2023, 43(12): 5459-5474.
22
Wang H, Chen X, He T, et al. Evidence for tissue-specific Jak/STAT target genes in Drosophila optic lobe development[J]. Genetics, 2013, 195(4): 1291-1306.
23
Yang F, Zhang S, Meng Q, et al. CXCR1 correlates to poor outcomes of EGFR-TKI against advanced non-small cell lung cancer by activating chemokine and JAK/STAT pathway[J]. Pulm Pharmacol Ther, 2021, 67: 102001.
24
Oster SK, Ho CS, Soucie EL, et al. The myc oncogene: Marvelousl Y Complex[J]. Adv Cancer Res, 2002, 84: 81-154.
25
Zhu L, Chen Z, Zang H, et al. Targeting c-Myc to overcome acquired resistance of EGFR mutant NSCLC cells to the third-generation EGFR tyrosine kinase inhibitor, osimertinib[J]. Cancer Res, 2021, 81(18): 4822-4834.
26
Lu W, Zhou Q, Chen Y. Impact of RNA degradation on next-generation sequencing transcriptome data[J]. Genomics, 2022, 114(4): 110429.
27
Zhang M, Wu J, Zhong W, et al. DNA-methylation-induced silencing of DIO3OS drives non-small cell lung cancer progression via activating hnRNPK-MYC-CDC25A axis[J]. Mol Ther Oncolytics, 2021, 23: 205-219.
28
Bao B, Yu X, Zheng W. MiR-139-5p targeting CCNB1 modulates proliferation, migration, invasion and cell cycle in lung adenocarcinoma[J]. Mol Biotechnol, 2022, 64(8): 852-860.
[1] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[2] 陶银花, 张红杰, 王亚岚, 陈莲, 张珺. 间歇式气压治疗预防肺癌化疗下肢深静脉血栓的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 605-608.
[3] 任甜甜, 张玉慧, 祁玲霞, 朱梅冬, 胡佳. 多学科疼痛管理对胸腔镜肺叶切除术后胸痛及应激反应的影响分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 630-633.
[4] 林建琴, 孔令敏, 陆银凤, 陈勇, 金凤, 叶磊, 陈方梅. PERMA模式对肺癌患者治疗获益感及生活质量的影响分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 634-638.
[5] 邓世君, 刘晓青, 刘权兴. 信息化管理在肺癌围手术期中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 466-468.
[6] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[7] 胡航, 陈婷婷, 孙健, 孙云浩, 仇丽敏. 三维重建技术在单操作孔胸腔镜肺段切除术的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 310-312.
[8] 陈羽霞, 柏佩梅, 芦遥遥. 综合干预对肺癌化疗患者的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 307-309.
[9] 吕欣谕, 李雯, 王娟侠, 邹维, 王艳, 雷杰. 围手术期肺康复训练在胸腔镜肺叶切除术中疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 256-259.
[10] 张蕊, 李敏, 饶建玲. 肺癌患者癌因性疲乏现状及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 111-114.
[11] 朱斯悦, 张晓莹, 严玉茹, 陈绯. 介入支气管镜在肺部疾病诊断和治疗中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 148-151.
[12] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
[13] 王蓉蓉, 鲁静, 狄守印, 王丽娇, 岳彩迎, 张静, 陈佩瑶. 球囊呼吸训练仪与床旁走步机对肺癌VATS围术期肺康复的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 874-876.
[14] 陈艳, 王安康, 梁风玲, 黄垂志, 陈山. DCE-MRI在肺癌BACE疗效判断中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 871-873.
[15] 顾兴, 张庭秀, 胡绳, 马李杰, 肖贞良. 胸苷激酶1在肺癌性胸腔积液及结核性胸膜炎中的表达[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 789-792.
阅读次数
全文


摘要