切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2025, Vol. 18 ›› Issue (04) : 540 -545. doi: 10.3877/cma.j.issn.1674-6902.2025.04.008

论著

衣康酸通过Nrf2抑制NLRP3激活拮抗卡介苗诱导RAW264.7细胞损伤机制研究
弓慧1, 祖力皮喀尔·阿卜杜热合曼1, 徐敬然1, 李黎1,2,()   
  1. 1844000 喀什,喀什地区第一人民医院 新疆感染性疾病(结核病)临床医学研究中心
    2844000 喀什,喀什地区第一人民医院呼吸与危重症医学科
  • 收稿日期:2025-03-20 出版日期:2025-08-25
  • 通信作者: 李黎
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2022D01C10); 新疆维吾尔自治区"天山英才"培养计划(2023TSYCJC0051)

Itaconate activates Nrf2 to inhibit NLRP3 inflammasome activation and alleviate BCG-induced inflammatory damage in RAW264.7 Cells

Hui Gong1, Abudureheman Zulipikaer1, Jingran Xu1, Li Li1,2,()   

  1. 1The First People′s Hospital of Kashi, Clinical Research Center of Infectious Diseases (Tuberculosis) Kashi, 844000 China
    2The First People′s Hospital of Kashi, Department of Respiratory and Critical Care Medicine, XinjiangKashi, 844000 China
  • Received:2025-03-20 Published:2025-08-25
  • Corresponding author: Li Li
引用本文:

弓慧, 祖力皮喀尔·阿卜杜热合曼, 徐敬然, 李黎. 衣康酸通过Nrf2抑制NLRP3激活拮抗卡介苗诱导RAW264.7细胞损伤机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 540-545.

Hui Gong, Abudureheman Zulipikaer, Jingran Xu, Li Li. Itaconate activates Nrf2 to inhibit NLRP3 inflammasome activation and alleviate BCG-induced inflammatory damage in RAW264.7 Cells[J/OL]. Chinese Journal of Lung Diseases(Electronic Edition), 2025, 18(04): 540-545.

目的

分析衣康酸(Itaconate)通过核因子E2相关因子2(nuclear factor erythroid 2-related factor 2, Nrf2)抑制NLR家族含吡啶结构域蛋白3(NLR family pyrin domain-containing 3, NLRP3)激活卡介苗(Bacillus Calmette-Guérin, BCG)诱导RAW264.7细胞炎症损伤机制。

方法

采用BCG感染RAW264.7细胞,4-辛基衣康酸(OI)为Itaconate衍生物,将细胞分为对照组,BCG组、BCG+OI组、BCG+OI+ML385组。BCG组采用1 200 μg/ml BCG感染4 h;BCG+OI组分别用15、30、60 μM 4-辛基Itaconate(4-octyl-Itaconate, OI)预处理3 h+1 200 μg/ml BCG感染4 h;BCG+OI+ML385组采用OI预处理+10 μM Nrf2抑制剂ML385+BCG处理4 h。检测细胞活力、Irg1、Nrf2、NLRP3的mRNA和蛋白表达水平及IL-1β和IL-18,通过Nrf2抑制剂ML385验证Nrf2的作用。

结果

对照组、BCG 100 μg/ml、200 μg/ml、400 μg/ml、800 μg/ml、1 200 μg/ml感染细胞活力分别为(100.00±0.00) 、(99.25±2.61)、(95.92±2.93)、(87.22±3.13)、(79.57±2.44)、(63.93±2.15)(P<0.05)。BCG组Irg1mRNA和蛋白水平分别为(2.34±0.15)、(0.74±0.06),Nrf2为(3.16±0.51) 、(0.58±0.11)和NLRP3为(6.54±0.82)、(1.16±0.13);对照组Irg1为(1.00±0.03)、(0.54±0.04),Nrf2为(1.00±0.00)、(0.36±0.18)和NLRP3为(1.00±0.00)、(0.52±0.15)(P<0.05)。BCG组IL-1β(45.93±1.1035)、IL-18(1076.58±164.73)高于对照组IL-1β (37.95±1.02)、IL-18 (429.12±45.38)(P<0.05)。BCG组、BCG+15 μM OI、BCG+30 μM OI、BCG+60 μM OI组细胞活力分别为(60.262±1.770)、(67.722±3.265)、(70.589±1.833)、(77.091±3.251)(P<0.05),NLRP3 mRNA分别为(6.541±0.822)、(4.154±0.746)、(3.761±1.210)、(3.016±0.516),NLRP3蛋白水平分别为(1.162±0.133)、(0.927±0.112)、(1.043±0.091)、(0.839±0.136);IL-1β分别为(45.926±1.105)、(40.102±0.669)、(37.291±2.443)、(37.001±2.539),IL-18分别为(1 076.584±164.728)、(839.663±19.818)、(748.350±97.910)、(667.800±11.420)(P<0.05),Nrf2的mRNA和蛋白表达水平增高(P<0.05)。BCG+OI+ML385组Nrf2 mRNA(3.916±0.646)和蛋白表达水平(0.551±0.090)少于BCG+OI组(5.914±0.716)、(0.753±0.060)(P<0.05),BCG+OI+ML385组NLRP3 mRNA(5.164±0.512)、蛋白表达水平(1.450±0.210)、IL-1β(10.988±0.658)、IL-18(403.585±13.142)高于BCG+OI组(3.561±0.810)、(1.010±0.310)、(6.982±0.0445)、(298.302±16.300)(P<0.05)。

结论

BCG通过NLRP3炎症小体活化加重巨噬细胞炎症损伤,Itaconate激活Nrf2抑制NLRP3发挥抗炎作用。

Objective

To analyze the mechanism by which itaconate inhibits NLRP3 activation and BCG-induced inflammatory injury in RAW264.7 cells through Nrf2.

Methods

RAW264.7 cells were infected with BCG. 4-octyl itaconate (OI) was used as an itaconate derivative. The cells were divided into the control group, BCG group, BCG+ OI group, and BCG+ OI+ ML385 group. The BCG group was infected with 1200 μg/ml BCG for 4 hours; the BCG+ OI group was pretreated with 15, 30, and 60 μM 4-octyl itaconate (OI) for 3 hours and then infected with 1 200 μg/ml BCG for 4 hours; the BCG+ OI+ ML385 group was pretreated with OI and then treated with 10 μM Nrf2 inhibitor ML385 and 1 200 μg/ml BCG for 4 hours. Cell viability, mRNA and protein expression levels of Irg1, Nrf2, and NLRP3, as well as IL-1β and IL-18, were detected. The role of Nrf2 was verified by using the Nrf2 inhibitor ML385.

Results

The cell viability of the control group, BCG 100 μg/ml, 200 μg/ml, 400 μg/ml, 800 μg/ml, and 1 200 μg/ml groups was (100.00±0.00), (99.25±2.61), (95.92±2.93), (87.22±3.13), (79.57±2.44), and (63.93±2.15), respectively (P<0.05). The mRNA and protein levels of Irg1 in the BCG group were (2.34±0.15) and (0.74±0.06), respectively; those of Nrf2 were (3.16±0.51) and (0.58±0.11), respectively; and those of NLRP3 were (6.54±0.82) and (1.16±0.13), respectively. In the control group, the mRNA and protein levels of Irg1 were (1.00±0.03) and (0.54±0.04), respectively; those of Nrf2 were (1.00±0.00) and (0.36±0.18), respectively; and those of NLRP3 were (1.00±0.00) and (0.52±0.15), respectively (P<0.05). The levels of IL-1β and IL-18 in the BCG group were (45.93±1.1035) and (1076.58±164.73), respectively, which were higher than those in the control group (IL-1β: 37.95±1.02; IL-18: 429.12±45.38) (P<0.05). The cell viability of the BCG group, BCG+ 15 μM OI group, BCG + 30 μM OI group, and BCG+ 60 μM OI group was (60.262±1.770), (67.722±3.265), (70.589±1.833), and (77.091±3.251), respectively (P<0.05). The mRNA levels of NLRP3 in these groups were (6.541±0.822), (4.154±0.746), (3.761±1.210), and (3.016±0.516), respectively; and the protein levels of NLRP3 were (1.162±0.133), (0.927±0.112), (1.043±0.091), and (0.839±0.136), respectively. The levels of IL-1β were (45.926±1.105), (40.102±0.669), (37.291±2.443), and (37.001±2.539), respectively, and the levels of IL-18 were (1 076.584±164.728), (839.663±19.818), (748.350±97.910), and (667.800±11.420) (P<0.05). The mRNA and protein expression levels of Nrf2 increased (P<0.05). The mRNA (3.916±0.646) and protein expression levels (0.551±0.090) of Nrf2 in the BCG+ OI+ ML385 group were lower than those in the BCG+ OI group (5.914±0.716) and (0.753±0.060) (P<0.05). The mRNA (5.164±0.512), protein expression levels (1.450±0.210), IL-1β (10.988±0.658), and IL-18 (403.585±13.142) in the BCG+ OI+ ML385 group were higher than those in the BCG+ OI group (3.561±0.810), (1.010±0.310), (6.982±0.0445), and (298.302±16.300) (P<0.05).

Conclusion

BCG aggravates macrophage inflammatory injury through NLRP3 inflammasome activation, while itaconate activates Nrf2 to inhibit NLRP3 and exert anti-inflammatory effects.

图1 OI预处理对RAW264.7细胞活力、炎症因子及NLRP3、Nrf2表达的影响。图A为OI预处理对RAW264.7细胞活力的影响;图B、C为OI预处理对RAW264.7细胞IL-1β及IL-18浓度的影响;图D、E为OI预处理对RAW264.7细胞NLRP3、Nrf2蛋白和mRNA表达水平的影响注:BCG为卡介苗;Itaconate为衣康酸;β-actin为β-肌动蛋白(内参蛋白);NLRP3为NLR家族含吡啶结构域蛋白3;Nrf2为核因子E2相关因子2; IL-1β为白细胞介素-1β、IL-18为白细胞介素-18;*P<0.05, **P<0.01,***P<0.001,与对照组相比。#P<0.05, ##P<0.01,###P<0.001,与BCG组相比
1
Churchyard GJ, Houben R, Fielding K, et al. Implications of subclinical tuberculosis for vaccine trial design and global effect[J]. Lancet Microbe, 2024, 5(10): 100895.
2
任成山,林辉,杨仕明. 结核病的流行特征与耐多药的窘迫及其策略[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 269-274.
3
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis[J]. Nat Rev Dis Primers, 2024, 10(1): 22.
4
Shi L, Jiang Q, Bushkin Y, et al. Biphasic dynamics of macrophage immunometabolism during mycobacterium tuberculosis infection[J]. mBio, 2019, 10(2): e02550-18.
5
Swanson KV, Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489.
6
Yang Y, Wang H, Kouadir M, et al. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors[J]. Cell Death Dis, 2019, 10(2): 128.
7
He F, Ru X, Wen T. NRF2, a transcription factor for stress response and beyond[J]. Int J Mol Sci, 2020, 21(13):4777.
8
Chen W, Teng X, Ding H, et al. Nrf2 protects against cerebral ischemia-reperfusion injury by suppressing programmed necrosis and inflammatory signaling pathways[J]. Ann Transl Med, 2022, 10(6): 285.
9
Wang H, Wang H, Huang H, et al. Melatonin attenuates spinal cord injury in mice by activating the Nrf2/ARE signaling pathway to inhibit the NLRP3 inflammasome[J]. Cells, 2022, 11(18): 2809.
10
Huang M, Wang Q, Long F, et al. Jmjd3 regulates inflammasome activation and aggravates DSS-induced colitis in mice[J]. Faseb J, 2020, 34(3): 4107-4119.
11
Sun Q, Shen X, Ma J, et al. Activation of Nrf2 signaling by oltipraz inhibits death of human macrophages with mycobacterium tuberculosis infection[J]. Biochem Biophys Res Commun, 2020, 531(3): 312-319.
12
Day EA, O′neill LAJ. Protein targeting by the itaconate family in immunity and inflammation[J]. Biochem J, 2022, 479(24): 2499-2510.
13
Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1[J]. Nature, 2018, 556(7699): 113-117.
14
Nair S, Huynh JP, Lampropoulou V, et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection[J]. J Exp Med, 2018, 215(4): 1035-1045.
15
Esteso G, Felgueres MJ, García-jiménez ÁF, et al. BCG-activation of leukocytes is sufficient for the generation of donor-independent innate anti-tumor NK and γδ T-cells that can be further expanded in vitro[J]. Oncoimmunology, 2023, 12(1): 2160094.
16
Cui Hua L, Haiying L, Baoxue G. Innate immunity in tuberculosis: host defense vs pathogen evasion[J]. Cell Mol Immunol, 2017, 14(12): 963-975.
17
Sharma BR, Kanneganti TD. NLRP3 inflammasome in cancer and metabolic diseases[J]. Nat Immunol, 2021, 22(5): 550-559.
18
Li M, Liu Y, Nie X, et al. S100A4 Promotes BCG-induced pyroptosis of macrophages by activating the NF-κB/NLRP3 inflammasome signaling pathway[J]. Int J Mol Sci, 2023, 24(16): 12709.
19
Xiaoyan Z, Qiang L, Guang X, et al. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors[J]. Front Immunol, 2023, 13: 1109938.
20
Javier O-B, Alejandro B-P, Víctor M B-A. Collaborative action of toll-like and nod-like receptors as modulators of the inflammatory response to pathogenic bacteria[J]. Med Inflamm, 2014, 2014: 1-16.
21
Nathan K, Devon J, Yanhui D, et al. The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation[J]. Int J Molecul Sci, 2019, 20(13): 3328.
22
Xu F, Qi H, LI J, et al. Mycobacterium tuberculosis infection up-regulates MFN2 expression to promote NLRP3 inflammasome formation[J]. J Biol Chem, 2020, 295(51): 17684-17697.
23
Lu F, Zhao Y, Pang Y, et al. NLRP3 inflammasome upregulates PD-L1 expression and contributes to immune suppression in lymphoma[J]. Cancer Lett, 2021, 497: 178-189.
24
Zhongjie Y, Meihong D, Melanie J S, et al. Immune-responsive gene 1/itaconate activates nuclear factor erythroid 2-related factor 2 in hepatocytes to protect against liver ischemia-reperfusion injury[J]. Hepatology, 2020, 72(4): 1394-1411.
25
Jonathan M, Helene W, Petr B, et al. Electrophilic Nrf2 activators and itaconate inhibit inflammation at low dose and promote IL-1β production and inflammatory apoptosis at high dose[J]. Redox Biol, 2020, 36: 101647.
26
Zeyu L, Wenbin Z, Wen K, et al. Itaconate: A potent macrophage immunomodulator[J]. Inflammation, 2023, 46(4): 1177-1191.
27
Yifan X, Qi C, Meng Li X, et al. Itaconate: A potential therapeutic strategy for autoimmune disease[J]. Scandinav J Immunol, 2025, 101(5) :e70026.
28
Shan-Ting L, Chao H, Ding-Qiao X, et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects[J]. Nat Commun, 2019, 10(1) : 5091.
29
Alexande RH, Stefano A, Svenja H, et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation[J]. Cell Metabolism, 2020, 32(3): 468-478.
30
Tufekci KU, Ercan I, Isci KB, et al. Sulforaphane inhibits NLRP3 inflammasome activation in microglia through Nrf2-mediated miRNA alteration[J]. Immunol Lett, 2021, 233: 20-30.
31
Dwivedi DK, Jena GB. Dimethyl fumarate-mediated Nrf2/ARE pathway activation and glibenclamide-mediated NLRP3 inflammasome cascade inhibition alleviate type Ⅱ diabetes-associated fatty liver in rats by mitigating oxidative stress and inflammation[J]. J Biochem Mol Toxicol, 2023, 37(7): e23357.
32
Srinivasaragavan D, Kannan H, Kumar G, et al. Dietary polyphenols remodel DNA methylation patterns of NRF2 in chronic disease[J]. Nutrients, 2023, 15(15): 3347.
33
Vitalii K, Oleh A, Oleksandr G, et al. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response[J]. Heliyon, 2023, 9(5): e15551.
34
Sepideh M, Ali Z, Farid H, et al. Regulation of nuclear factor-kappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis?[J]. Cancer Letters, 2021, 509: 63-80.
35
Jae-min Y, Eun-jin P, In Soo K, et al. Itaconate family-based host-directed therapeutics for infections[J]. Front Immunol, 2023, 14: 1203756.
36
Thekla C, Christian MM. Itaconate Alters succinate and coenzyme a metabolism via inhibition of mitochondrial complex Ⅱ and methylmalonyl-coa mutase[J]. Metabolites, 2021, 11(2): 117.
[1] 徐桂萍, 朱倩倩, 杨振宇. 富马酸二甲酯减轻糖尿病大鼠心肌缺血再灌注损伤及其相关机制研究[J/OL]. 中华危重症医学杂志(电子版), 2021, 14(02): 100-106.
[2] 龚丽文, 张旭. 血尿阴性不典型泌尿道结核一例及文献复习[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 60-63.
[3] 汤艳芬, 赵雯, 马成杰, 刘刚, 陈奇, 刘菁, 薛天娇, 刘岩岩, 陈融佥, 王宇. 人类免疫缺陷病毒感染合并鸟分枝杆菌复合群病临床特点[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 348-353.
[4] 谭洁, 詹森林, 邓国防, 张培泽. 抗干扰素γ自身抗体综合征导致哥伦比亚分枝杆菌播散性感染一例[J/OL]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 210-214.
[5] 巨春蓉, 孙启全, 薛武军. 器官移植受者非结核分枝杆菌病诊疗进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 1-6.
[6] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[7] 王卓, 屈少毅, 邹远妩, 仵倩红, 李静, 王彪, 魏子涵, 王晓琳. 等离子活化盐水对结核分枝杆菌体外抑菌作用的分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(02): 279-283.
[8] 刘洪千, 马琦, 陈娟娟, 王成军, 武玲玲, 冯喜英. miR-150-5p 在青海地区结核分枝杆菌感染患者血清中的表达及意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 42-47.
[9] 叶春幸, 丘国清, 林缓卿, 申严, 陈思达, 赖育庭, 徐香琴. 宏基因组二代测序肺结核及病原体特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(06): 985-990.
[10] 顾晓凌, 吴冠楠, 宋勇. 核因子E2相关因子2(Nrf2)与铁死亡在脓毒症相关急性肺损伤中的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 324-328.
[11] 张燕珍, 王锡携, 文小兰. 血清巨噬细胞迁移抑制因子对活动性肺结核分诊检测的意义[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(02): 200-202.
[12] 洪青青, 姚超, 张新宝. 非结核分枝杆菌肺病患者流行病学临床特点及耐药情况分析[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(04): 506-508.
[13] 赖宁, 庄泽钦, 钟典. 广州地区非结核分枝杆菌肺病微生物及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(03): 339-343.
[14] 陈众众, 闵凌峰, 刘家昌. 应用宏基因二代测序技术诊断胞内分枝杆菌型NTM肺病一例并文献复习[J/OL]. 中华肺部疾病杂志(电子版), 2022, 15(03): 448-450.
[15] 包训迪, 吴丹丹, 江跃, 梁锁, 王超, 王舒, 王庆. 非结核分枝杆菌鉴定方法和病原谱分析[J/OL]. 中华临床医师杂志(电子版), 2022, 16(01): 38-42.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?