切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (03) : 306 -310. doi: 10.3877/cma.j.issn.1674-6902.2019.03.008

所属专题: 专题评论 文献

论著

心脏磁共振在肺动脉高压病情评估中的作用及临床意义
张川子1, 姜鹏2,(), 张峰2   
  1. 1. 832000 石河子,新疆石河子大学医学院;830000 乌鲁木齐,新疆军区总医院呼吸与危重症医学科
    2. 830000 乌鲁木齐,新疆军区总医院呼吸与危重症医学科
  • 收稿日期:2018-07-10 出版日期:2019-06-20
  • 通信作者: 姜鹏
  • 基金资助:
    新疆维吾尔自治区科学成果转化专项基金项目(201554145)

Role of cardiac magnetic resonance in evaluation of pulmonary hypertension

chuanzi Zhang1, peng Jiang2,(), feng Zhang2   

  1. 1. Medical College of Shihezi University, Shihezi 832000, Xinjiang, China; Respiratory and Critical Care Medicine, General Hospital, Xinjiang Military Command, Urumqi 830000, China
    2. Respiratory and Critical Care Medicine, General Hospital, Xinjiang Military Command, Urumqi 830000, China
  • Received:2018-07-10 Published:2019-06-20
  • Corresponding author: peng Jiang
  • About author:
    Corresponding author: Jiang peng, Email:
引用本文:

张川子, 姜鹏, 张峰. 心脏磁共振在肺动脉高压病情评估中的作用及临床意义[J]. 中华肺部疾病杂志(电子版), 2019, 12(03): 306-310.

chuanzi Zhang, peng Jiang, feng Zhang. Role of cardiac magnetic resonance in evaluation of pulmonary hypertension[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(03): 306-310.

目的

探讨心脏磁共振(MRI)在肺动脉高压患者病情评估中的作用。

方法

选取2012年6月至2018年10月就诊于新疆军区总医院的成年、能耐受右心漂浮导管检查的肺动脉高压患者25例,每例患者均进行右心漂浮导管及心脏磁共振检查,分别测量右心漂浮导管及心脏磁共振相关指标,并分析其相关性。

结果

为消除因个体差异对的解剖学数据造成影响,故将经MRI测得的肺动脉主干内径、右肺动脉主干内径、右心室前壁厚度分别与右膈顶平面胸横径做比值,单因素方差分析发现,肺动脉主干内径/右膈顶平面胸横径(MPA/T)、右肺动脉主干内径/右膈顶平面胸横径(RAP/T)、右心室前壁厚度/右膈顶平面胸横径(RVW/T)观察组及对照组之间差异有统计学意义(P<0.05),经右心漂浮导管测得的肺动脉收缩压(PASP)、肺动脉平均压(PAMP)、全肺阻力(PVR)观察组与对照组之间差异均有统计学意义(P<0.05)。将解剖学指标MPA/T、RAP/T、RVW/T与PASP、PAMP及PVR分别做相关性分析后得出除RAP/T与PVR的P>0.01,其余均P<0.01,说明MPA/T、RAP/T与PASP、PAMP、PVR呈正相关,RVW/T与PASP、PAMP呈正相关。

结论

心脏磁共振检查所得的解剖指标、MPA/T、RAP/T、RVW/T可用于评价有无肺动脉高压及评估肺动脉高压程度,有重要临床意义。

Objective

To study the role of cardiac magnetic resonance in the evaluation of pulmonary hypertension.

Methods

From June 2012 to October 2018, 25 patients with pulmonary hypertension who were admitted to the General Hospital of Xinjiang Military Command, Urumqi, China, and were able to tolerate the right heart floating catheter examination were selected for this study. Each patient was subjected to a right heart floating catheter examination and a heart magnetic resonance examination. The related indicators of the right heart floating catheter examination and cardiac magnetic resonance examination were measured respectively and the relevance was analyzed.

Results

In order to eliminate the influence of individual differences on the anatomical data, the inner diameter of the pulmonary trunk, the inner diameter of the right pulmonary trunk and the thickness of the anterior wall of the right ventricle measured by magnetic resonance imaging (MRI) were compared with the transverse diameter of the right diaphragm top plane. The results of one-way analysis of variance (ANOVA) showed that there existed significant differences between the inner diameter of the pulmonary trunk/the transverse diameter of the right diaphragm top plane (MPA/T), the inner diameter of the right pulmonary trunk/the transverse diameter of the right diaphragm top plane (RAP), and the thickness of the anterior wall of the right ventricle/the transverse diameter of the right diaphragm top plane (RVW/T) between the experimental group and the control group (P<0.05). There were significant differences in the pulmonary arterial systolic pressure (PASP), the pulmonary arterial mean pressure (PAMP) and the pulmonary vascular resistance (PVR) between the experimental group and the control group (P<0.05). The correlation analysis of the anatomical indexes, MPA/T, RAP/T, RVW/T, and PASP, PAMP and PVR showed that except for RAP/T and PVR (P>0.01), the P values of the rest indicators were less than 0.01, indicating that MPA/T and RAP/T were positively correlated with PASP, PAMP and PVR, and RVW/T was positively correlated with PASP and PAMP.

Conclusion

The anatomical indexes, MPA/T, RAP/T, and RVW/T, obtained from cardiac magnetic resonance examination, can be used to evaluate the presence or absence of pulmonary arterial hypertension and assess the degree of pulmonary arterial hypertension, it has important clinical significance.

图1 心脏磁共振成像图;注:A:右心室前壁舒张末期厚度;B:主肺动脉宽度;C:右肺动脉宽度;D:左肺动脉宽度
表1 两组解剖参数比较(mm,±s)
表2 两组有心导管测量血流动力学参数比较(±s)
表3 心脏磁共振解剖参数与导管血流动力学参数的相关分析
1
Kiely DG, Elliot CA, Sabroe I, et al. Pulmonary bypertension:diagnosis and management[M]//.Diagnosis and Management of Pulmonary Hypertension. New York: Springer, 2013: 953-958.
2
徐楠,吴伟春,牛丽莉,等. 肺动脉高压患者心室重构的超声心动图指标与肺阻力的相关性研究[J]. 中国循环杂志,2017, 32(2): 161-164.
3
胡海燕,张静芳,韩秀清. 超声心动图对新生儿肺动脉高压的诊断价值[J]. 安徽医学,2016, 37(5): 590-592.
4
Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model[J]. Eur Respir J, 2017, 50: 1700740.
5
McLaughlin VV, Hoeper MM, Channick RN, et al. Pulmonary arterial hypertension-related morbidity is prognostic for mortality[J]. J Am Coll Cardiol, 2018, 71: 752-763.
6
Boucly A, Weatherald J, Savale L, et al. Risk assessment, prognosis and guideline implementation in pulmonary arterial hypertension[J]. Eur Respir J, 2017, 50: 1700889.
7
Hoeper M, Pittrow D, Opitz C, et al. Risk assessment in pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51: 1702606.
8
Machado RD, et al. Pulmonary arterial hypertension: a current perspective on established and emerging molecular genetic defects[J]. Hum. Mutat, 2015, 36: 1113-1127.
9
韩燕,杨振文,于铁链,等. 1.5T MRI评估肺动脉高压患者右心功能及肺动脉血液动力学[J]. 中国肺癌杂志,2012, 15(8): 471-475.
10
Hudsmith LE, Peteesen SE, Francis JM, et al. normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging[J]. J Cardiovasc Magn Reson, 2005, 7(5): 775-782.
11
云娟,何建国. 肺动脉高压右心室功能障碍的治疗进展[J]. 中华心血管病杂志,2011, 39(10): 967-969.
12
Chun HJ, Bonnet S, Chan SY. Translational advances in the field of pulmonary hypertension. Translating microrna biology in pulmonary hypertension. It will take more than "miR" words[J]. Am J Respir Crit Care Med, 2017, 195: 167-178.
13
Prior DL, Adams H, Williams TJ. Update on pharmacotherapy for pulmonary hypertension[J]. Med J Aust, 2016, 205: 271-276.
14
Hadinnapola C, et al. Phenotypic characterization of EIF2AK4 mutation carriers in a large cohort of patients diagnosed clinically with pulmonary arterial hypertension[J]. Circulation, 2017, 136: 2022-2033.
15
Vonk Noordegraaf A, Chin KM, Haddad F, et al. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update[J]. Eur Respir J, 2019, 53: 1801900.
16
Kylhammar D, Kjellström B, Hjalmarsson C, et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension[J]. Eur Heart J, 2018, 39: 4175-4181.
17
Weatherald J, Sitbon O, Humbert M. Validation of a risk assessment instrument for pulmonary arterial hypertension[J]. Eur Heart J, 2018, 38: 4182-4185.
18
Nazzareno Galiè,Richard N. Channick, Robert P, et al. Frantz.Risk stratification and medical therapy of pulmonary arterial hypertension[J]. Eur Respir J, 2019, 53(1): 1801889.
19
Hoeper M, Pittrow D, Opitz C, et al. Risk assessment in pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51: 1702606.
20
Keusch S, Turk A, Saxer S, et al. Rehabilitation in patients with pulmonary arterial hypertension[J]. Swiss Med Wkly, 2017, 147: w14462.
21
Sitbon O, Sattler C, Bertoletti L, et al. Initial dual oral combination therapy in pulmonary arterial hypertension[J]. Eur Respir J, 2016, 47: 1727-1736.
22
Sofer A, Ryan MJ, Tedford RJ, et al. A systematic review of transition studies of pulmonary arterial hypertension specific medications[J]. Pulm Circ, 2017, 7: 326-338.
23
Maceira AM, Prasad SK, Khan M, et al. Reference right ventricular systolic and diastolic function normalized to age,gender and body surface area from steady-state free precession cardiovascular magnetic resonance[J]. Eur Heart J, 2006, 27(23): 2879-2888.
24
Long W, Wang J, Yang J, et al. Naturally-Derived PHA-L Protein Nanoparticle as a Radioprotector Through Activation of Toll-Like Receptor 5[J]. J Biomed Nanotechnol, 2019, 15(1): 62-76.
25
Frantz RP, Farber HW, Badesch DB, et al. Baseline and serial brain natriuretic peptide level predicts 5-year overall survival in patients with pulmonary arterial hypertension: data from the REVEAL Registry[J]. Chest, 2018, 154: 126-135.
26
Galiè N, Jansa P, Pulido T, et al. SERAPHIN haemodynamic substudy:the effect of the dual endothelin receptor antagonist macitentan on haemodynamic parameters and NT-proBNP levels and their association with disease progression in patients with pulmonary arterial hypertension[J]. Eur Heart J, 2017, 38: 1147-1155.
27
Evans JD, et al. BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis[J]. Lancet Respir Med, 2016, 4: 129-137.
28
Chen CW, Hu S, Tsui KH, et al. Anti-inflammatory Effects of Gossypol on Human Lymphocytic Jurkat Cells via Regulation of MAPK Signaling and Cell Cycle[J]. Inflammation, 2018, 41(6): 2265-2274.
29
Butt FI, Muhammad N, Hamid A, et al. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications-Review.[J]. Int J Biolog Macromol, 2018, 120 (Pt A): 1294-1305.
30
Schmidt JF, Wissmann L, Manka R, et al. Iterative k-t principal component analysis with nonrigid motion correction for dynamic three-dimensional cardiac perfusion imaging[J]. Magn Reson Med, 2014, 72(1): 68-79.
31
Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension:The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertendion of the European Society of Cardiology(ESC)and the European Respiratory Society(ERS)Endorsed by: Association for European Paediatric and Congenital(AEPC), International Society for Heart and Lung Transplantation(ISHLT)[J]. Eur Respir J, 2015, 46: 903-975.
32
McLaughlin VV, Gaine SP, Howard LS, et al. Treatment goals of pulmonary hypertension[J]. J Am Coll Cardiol, 2013, 62(25 Suppl):D73-D81.
[1] 罗霞, 王宝梅, 李淑景, 杨英. 特发性肺动脉高压血清PCSK9表达及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 585-589.
[2] 朱佑君, 付万垒, 毛杨, 李德峰. 细胞外基质相关标志物与成纤维细胞在肺动脉高压发展中的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 356-362.
[3] 张艺萱, 罗金丹, 葛小丽, 钟红琴. 先天性心脏病伴PH血清H-FABP、NT-proBNP与肺动脉内径、血流速度及PASP的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 252-255.
[4] 陈晓毅, 尹雪霞, 刘静, 邬国松. 阻塞性睡眠呼吸暂停低通气综合征并发肺动脉高压的危险因素及预测分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 41-45.
[5] 苏小慧, 宋新雅, 鱼帆, 丁小涵, 卞士柱. 高原肺动脉高压机制与药物治疗进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 742-747.
[6] 刘玉强, 吴秀秀, 李晓辉, 王瑜, 韩国霖, 张伟, 王俊芝, 侯春霞. 瑞舒伐他汀钙联合激素气道雾化对AECOPD并发肺动脉高压的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 670-672.
[7] 代芬, 卞士柱. 无创机械通气联合肺康复在肺动脉高压呼吸衰竭治疗中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 560-562.
[8] 吴欣, 袁晓晨, 沈慧, 秦建华. 三尖瓣反流速度评估肺动脉高压患者心脏结构改变的研究[J]. 中华临床医师杂志(电子版), 2024, 18(03): 259-267.
[9] 余林阳, 王美英, 李建斌, 楼骁斌, 谢思远, 马志忠, 齐海英, 李稼. 高原地区肺炎合并右心功能衰竭体征患儿的肺动脉压力和心脏形态与功能的特征[J]. 中华临床医师杂志(电子版), 2023, 17(05): 535-544.
[10] 孟丽君, 宋芹, 邵莉, 李健. 系统性红斑狼疮合并肺动脉高压患者外周血T淋巴细胞亚群水平变化及临床意义[J]. 中华诊断学电子杂志, 2024, 12(01): 38-43.
[11] 蒋蔚茹, 徐三荣. 要努力弄清"慢性胃炎"的临床意义[J]. 中华诊断学电子杂志, 2023, 11(04): 266-270.
[12] 田欢, 吴艳凯, 宋波, 魏榕辰, 张艳, 李月戈, 武柏林. 基于心脏磁共振多模态特征评估急性心肌梗死患者预后[J]. 中华心脏与心律电子杂志, 2024, 12(01): 17-25.
[13] 吕滨. “工欲善其事,必先利其器”,加快推进影像学新技术的研发与应用[J]. 中华心脏与心律电子杂志, 2024, 12(01): 14-16.
[14] 王靖玺, 赵丽, 吕滨. 人工智能在肺栓塞CT检查中的临床研究进展[J]. 中华心脏与心律电子杂志, 2024, 12(01): 26-31.
[15] 张明杰, 柳立平, 李春香, 刘玉洁, 徐卓明. 先天性心脏病术后早期一氧化氮吸入治疗的有效性和安全性评价[J]. 中华心脏与心律电子杂志, 2023, 11(04): 210-215.
阅读次数
全文


摘要