切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (06) : 697 -701. doi: 10.3877/cma.j.issn.1674-6902.2019.06.006

论著

YAP调控肺癌A549/DDP细胞顺铂耐药性的机制分析
肖丹1, 杜琴1, 贺斌峰2, 郭晓兰1,()   
  1. 1. 637007 南充,川北医学院转化医学研究中心
    2. 400037 重庆,陆军军医大学(第三军医大学)第二附属医院呼吸研究所
  • 收稿日期:2019-05-17 出版日期:2019-12-20
  • 通信作者: 郭晓兰
  • 基金资助:
    四川省卫计委科研课题(16PJ131)

Effect and mechanism of Yse-associated protein controlling drug resistance of cisplatin in A549/DDP cells of patients with lung cancer

Dan Xiao1, Qin Du1, Binfeng He2, Xiaolan Guo1,()   

  1. 1. Research Center of Translational Medicine, North Sichuan Medical College, Nanchong 637007, Sichuan Province, China
    2. Institute of Respiratory Diseases, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
  • Received:2019-05-17 Published:2019-12-20
  • Corresponding author: Xiaolan Guo
引用本文:

肖丹, 杜琴, 贺斌峰, 郭晓兰. YAP调控肺癌A549/DDP细胞顺铂耐药性的机制分析[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 697-701.

Dan Xiao, Qin Du, Binfeng He, Xiaolan Guo. Effect and mechanism of Yse-associated protein controlling drug resistance of cisplatin in A549/DDP cells of patients with lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(06): 697-701.

目的

探讨Yse相关蛋白(Yes-associated protein, YAP)对A549/DDP细胞顺铂耐药性的影响及其机制。

方法

采用MTS检测顺铂对肺腺癌A549细胞以及肺腺癌耐顺铂A549/DDP细胞的50%抑制浓度(IC50)。使用qPCR以及Western blot检测A549和A549/DDP细胞中YAP mRNA以及蛋白的表达。Western blot检测维替泊芬(Verteporfin, VP)处理A549/DDP后YAP蛋白表达变化。将A549/DDP细胞设置为DMSO对照组、顺铂组(DDP组)、维替泊芬组(VP组)、顺铂联合维替泊芬组(DDP+VP组),采用MTS检测0、24和48 h各处理组细胞活力的变化。采用qPCR检测VP处理A549/DDP后干细胞标志物ALDHA1、CD133、OCT4、NANOG、SOX2的mRNA表达变化。

结果

顺铂对A549和A549/DDP细胞的IC50分别为(4.07±0.03)μg/ml、(23.44±0.98)μg/ml,耐药指数为5.76。A549/DDP细胞中YAP显著高于A549细胞(P<0.05)。VP处理A549/DDP细胞后YAP蛋白表达水平较DMSO组明显降低。DDP+VP组较单独DDP组,其细胞活力在24 h和48 h均明显降低(P<0.05)。qPCR检测发现A549/DDP细胞经VP处理后,干细胞标志物ALDHA1、CD133、OCT4、NANOG、SOX2的mRNA均较DMSO组明显降低(P<0.05)。

结论

YAP可能参与了肺癌细胞的顺铂耐药。抑制YAP可通过抑制肿瘤干细胞特性,进而发挥逆转耐药的作用。

Objective

To investigate the effect and mechanism of Yse-associated protein (YAP) on the drug resistance of cisplatin in the A549/DDP cells of the patients with lung cancer.

Methods

MTS was used to detect the 50% inhibitory concentration (IC50) of cisplatin in the lung adenocarcinoma A549 cells and lung adenocarcinoma-resistant cisplatin A549/DDP cells. The expression levels of YAP mRNA and protein in the A549 and A549/DDP cells were detected by quantitative polymerase chain reaction (qPCR) and Western blotting. Western blotting was used to detect the expression level of YAP protein after A549/DDP cells receiving treatment of verteporfin (VP). The A549/DDP cells were designed as the DMSO control group, cisplatin group (DDP group), verteporfin group (VP group), and cisplatin combined with verteporfin group (DDP+ VP group). And MTS was used to detect the cell viability in each treatment group immediately, 24 h, and 48 h after treatment. The changes of mRNA expression of the stem cell markers ALDHA1, CD133, OCT4, NANOG and SOX2 after A549/DDP cells receiving treatment of VP were detected by qPCR.

Results

The IC50 values of cisplatin in the A549 and A549/DDP cells were (4.07±0.03) μg/ml and (23.44±0.98) μg/ml, respectively. YAP was significantly higher in the A549/DDP cells than in the A549 cells (P<0.05). The expression level of YAP protein in the VP-treated A549/DDP cells was significantly lower than that of the DMSO group. Compared with the DDP group, the DDP+ VP group showed a significant decrease in the cell viability 24 h and 48 h after treatment (P<0.05). After treatment with VP, the mRNA expression levels of the stem cell markers ALDHA1, CD133, OCT4, NANOG and SOX2 were significantly lower than those of DMSO group (P<0.05).

Conclusion

YAP may be involved in the cisplatin resistance in the lung cancer cells. Inhibition of YAP can play a role in reversing drug resistance through inhibiting the characteristics of cancer stem cells.

图1 A549/DDP抵抗顺铂的杀伤作用;注:A:MTS顺铂处理A549以及A549/DDP细胞的细胞活力曲线;B:A549以及A549/DDP细胞的顺铂IC50;注:*与A549细胞相比,P<0.05
图2 检测YAP在A549/DDP中的表达;注:A:qPCR检测YAP mRNA在A549以及A549/DDP细胞中的表达;*,与A549细胞相比,*P<0.05;B:Western blot检测YAP蛋白在A549以及A549/DDP细胞中的表达
图3 VP增强A549/DDP细胞对顺铂敏感性;注:A:Western blot检测VP处理后A549/DDP细胞中YAP蛋白表达;B:经药物处理后A549/DDP细胞的细胞活力;注:*,与DMSO组相比,*P<0.05;^,与DDP组相比,^P<0.05
图4 qPCR检测A549/DDP细胞经VP处理后干细胞标志物mRNA的表达变化;注:*,与DMSO组相比,*P <0.05
1
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
2
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
3
Hirsch FR, Scagliotti GV, Mulshine JL, et al. Lung cancer: current therapies and new targeted treatments[J]. Lancet, 2017, 389(10066): 299-311.
4
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer[J]. Cancer Cell, 2016, 29(6): 783-803.
5
Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes & Development, 2012, 26(12): 1300-1305.
6
Lo SF, Strano S, Blandino G. YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting[J]. Cancers (Basel), 2018,10(5): doi: 10.3390/cancers10050137.
7
Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease[J]. Nat Rev Mol Cell Biol, 2017,18(12): 758-770.
8
Dai Y, Liu S, Zhang WQ, et al. YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells[J]. Oncotarget, 2017, 8(3): 4096-4109.
9
Hsu PC, You B, Yang YL, et al. YAP promotes erlotinib resistance in human non-small cell lung cancer cells[J]. Oncotarget, 2016, 7(32): 51922-51933.
10
Wang K, Wang C, Dai L, et al. Targeting an Autocrine Regulatory Loop in Cancer Stem-like Cells Impairs the Progression and Chemotherapy Resistance of Bladder Cancer[J]. Clinical Cancer Research, 2019, 25(3): 1070-1086.
11
Ciamporcero E, Shen H, Ramakrishnan S, et al. YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage[J]. Oncogene, 2016, 35(12): 1541-1553.
12
Wang Z, Kang L, Zhang H, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation[J]. Oncogene, 2019, 38(26): 5250-5264.
13
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
14
Nwani N G, Condello S, Wang Y, et al. A Novel ALDH1A1 Inhibitor Targets Cells with Stem Cell Characteristics in Ovarian Cancer[J]. Cancers (Basel), 2019, 11(4): doi: 10.3390/cancers11040502.
15
Aghajani M, Mansoori B, Mohammadi A, et al. New emerging roles of CD133 in cancer stem cell: Signaling pathway and miRNA regulation[J]. J Cell Physiol, 2019, 234(12): 21642-21661.
16
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate[J]. Cell Stem Cell, 2013, 12(1): 15-30.
17
Villodre ES, Kipper FC, Pereira MB, et al. Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis[J]. Cancer Treat Rev, 2016, 51: 1-9.
18
Batlle E, Clevers H. Cancer stem cells revisited[J]. Nat Med, 2017, 23(10): 1124-1134.
19
Clarke MF. Clinical and Therapeutic Implications of Cancer Stem Cells[J]. N Engl J Med, 2019, 380(23): 2237-2245.
20
Wuebben EL, Rizzino A. The dark side of SOX2: cancer-a comprehensive overview[J]. Oncotarget, 2017, 8(27): 44917-44943.
21
Franqui-Machin R, Wendlandt EB, Janz S, et al. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction?[J]. Oncotarget, 2015, 6(38): 40496-40506.
[1] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[2] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[3] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[4] 徐天亮, 程干思, 吴亚平, 龚荣, 胡洁, 段群娣, 李承慧. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 520-522.
[5] 魏婷婷, 胡小红, 龚自强, 熊鹿. 老年非小细胞肺癌组织ARPC2表达及与预后关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 584-586.
[6] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[7] 杨豪, 王云川, 陈有英. 硬膜外阻滞复合羟考酮镇痛在非小细胞肺癌患者中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 370-372.
[8] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[9] 李多, 郝昭昭, 陈延伟, 南岩东. Wnt/β-Catenin通路促进非小细胞肺癌转移机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 281-284.
[10] 邹琴, 龙玲, 叶容, 张小洪. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 278-280.
[11] 仇丽敏, 胡航, 孙云浩, 孙健, 陈婷婷. NSCLC患者根治性切除术后复发风险分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 242-244.
[12] 曹文淼, 邢恩明, 杨建奇. 调强放疗联合香菇多糖注射液同期TP化疗对中晚期NSCLC临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 77-79.
[13] 孙龙, 政红卫, 俞玲玲, 甄杰. 非小细胞肺癌FGFR3及CyclinD1表达与临床病理特征及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 64-66.
[14] 曹玲莉, 涂平华, 吴展陵, 李新军. NK细胞、Treg细胞、T淋巴亚群在NSCLC外周血中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 55-57.
[15] 王甜甜, 温媛, 李振, 叶美红, 郭影, 马双. 和厚朴酚调控Nrf2/ARE通路对胃癌细胞的顺铂化疗敏感性的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 202-209.
阅读次数
全文


摘要