切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2019, Vol. 12 ›› Issue (06) : 727 -732. doi: 10.3877/cma.j.issn.1674-6902.2019.06.012

论著

长链非编码RNA GIHCG对非小细胞肺癌恶性表型的影响
祝国芸1, 向朝雪1, 林骏1, 张勇2, 李福祥1, 胡健1,()   
  1. 1. 610083 成都,西部战区总医院重症医学科
    2. 610504 成都,新都区第三人民医院重症医学科
  • 收稿日期:2019-05-17 出版日期:2019-12-20
  • 通信作者: 胡健

Effect of long non-coding RNA GIHCG on malignant phenotype of non-small cell lung cancer

Guoyun Zhu1, Chaoxue Xiang1, Jun Lin1, Yong Zhang2, Fuxiang Li1, Jian Hu1,()   

  1. 1. Department of Critical Care Medicine, General Hospital of Western Theater of PLA, Chengdu 610083, China
    2. Department of Critical Care Medicine, Third People′s Hospital of Xindu District, Chengdu 610504, China
  • Received:2019-05-17 Published:2019-12-20
  • Corresponding author: Jian Hu
引用本文:

祝国芸, 向朝雪, 林骏, 张勇, 李福祥, 胡健. 长链非编码RNA GIHCG对非小细胞肺癌恶性表型的影响[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 727-732.

Guoyun Zhu, Chaoxue Xiang, Jun Lin, Yong Zhang, Fuxiang Li, Jian Hu. Effect of long non-coding RNA GIHCG on malignant phenotype of non-small cell lung cancer[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2019, 12(06): 727-732.

目的

探讨长链非编码RNA GIHCG(lncRNA GIHCG)对非小细胞肺癌(NSCLC)恶性表型的影响。

方法

使用qRT-PCR法分别检测50例NSCLC的肿瘤组织及其癌旁组织中lncRNA GIHCG及正常人支气管上皮细胞系E16HB,NSCLC细胞系A549、H1299、H1650、H2087中lncRNA GIHCG的表达。分别使用小干扰RNA(siRNA-1、siRNA-2)及对照转染A549和H1299细胞,实验设siRNA-1转染组、siRNA-2转染组、阴性对照组和空白对照组。各组转染48 h后采用CCK-8实验检测细胞增殖活性,Transwell实验检测细胞侵袭能力,流式细胞术检测各组细胞周期变化。

结果

qRT-PCR结果显示,lncRNA GIHCG在肺癌组织中的表达水平明显高于癌旁组织,同时非小细胞肺癌细胞系A549、H1299、H1650、H2087中lncRNA GIHCG的表达均高于16HBE细胞,差异有统计学意义(P<0.05)。转染48 h后,与空白对照组和阴性对照相比,siRNA-1组和siRNA-2组细胞存活率明显下降,穿膜细胞数明显减少,G0/G1期细胞比例明显增加,S期细胞减少,差异均有统计学意义,而阴性对照组和空白对照组上述指标差异均无统计学意义。

结论

lncRNA GIHCG高表达于NSCLC组织及细胞系中,沉默lncRNA GIHCG表达可明显抑制NSCLC恶性生物学表型。

Objective

To investigate the effect of long non-coding RNA GIHCG (lncRNA GIHCG) on the malignant phenotype of non-small cell lung cancer (NSCLC).

Methods

Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of lncRNA GIHCG in the tumor tissues and the adjacent normal tissues of 50 patients with NSCLC, respectively. LncRNA GIHCG expression levels in human normal bronchial epithelial cell line 16HBE and NSCLC cell lines A549, H1299, H1650, and H2087 were also detected. Two small interfering RNAs (siRNA-1 and siRNA-2) were designed according to the lncRNA GIHCG sequence. Both the siRNAs were transfected respectively into A549 and H1299 cells. Then the cells were separately divided into four groups: siRNA-1 transfection group, siRNA-2 transfection group, the negative control group, and the blank control group. After transfection for 48 h, the cell proliferation activity was investigated with CCK8 array. Transwell assay was applied to detect the cell invasion ability and flow cytometry was used to detect the cell cycle changes in each group. All the data were statistically analyzed with SPSS 16.0. The measurement data conforming to the normal distribution were shown as mean±standard deviation (mean±SD), and the comparison between two groups was performed by independent sample t test. The one-way analysis of variance (ANOVA) was used to determine whether there were any statistically significant differences in comparing multiple groups and the least significant difference (LSD) was used to further analyze the difference between two groups after ANOVA test.

Results

The qRT-PCR results showed that the expression level of lncRNA GIHCG in the lung cancer tissues was significantly higher than that of the adjacent normal tissues, and the expression levels of lncRNA GIHCG in the NSCLC cell lines A549, H1299, H1650 and H2087 were all significantly higher than the expression level of GIHCG in 16HBE cells (P<0.05). After transfection for 48 h, compared with the blank control group and the negative control group, the survival rates of cells in the siRNA-1 transfection group and the siRNA-2 transfection group were significantly decreased. Correspondingly, the number of transmembrane cells was significantly reduced. The proportion of cells in G0/G1 phase was significantly increased, and the number of cells in the S phase was decreased, with statistically significant difference between them. However, the G2/M phase cells were the same proportion in different treatments. The difference between the negative control group and the blank control group had no statistical significant difference.

Conclusion

lncRNA GIHCG is highly expressed in the NSCLC tissues and the cell lines. Therefore, silencing the expression of lncRNA GIHCG can significantly inhibit the biological phenotype of malignant NSCLC.

图1 GIHCG在NSCLC组织和细胞中表达增加(A) qRT-PCR检测NSCLC组织(肿瘤)和正常邻近组织(正常)中lncRNA GIHCG相对表达水平。(B) qRT-PCR检测NSCLC组织NSCLC细胞系(A549、H1299、H1650、H2087)和人之气管上皮养细胞系(16HBE)中lncRNA GIHCG相对表达水平.所有数据均以Mean±SEM表示,**P<0.01,*P<0.05
图2 转染siRNA后lncRNA GIHCG在A549、H1299细胞中的表达情况。所有数据均以Mean±SEM表示,**P<0.01,*P<0.05
图3 GIHCG影响A549、H1299细胞的增殖。所有数据均以Mean±SEM表示,**P<0.01,*P<0.05
图4 GIHCG影响A549、H1299细胞的侵袭功能。所有数据均以Mean±SEM表示,**P<0.01,*P<0.05
图5 GIHCG影响A549、H1299的细胞周期。所有数据均以Mean±SEM表示,**P<0.01,*P<0.05
1
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
2
Ettinger DS, Wood DE, Akerley W, et al. Non-Small Cell Lung Cancer,Version 6.2015 [J]. J Natl Compr Canc Netw, 2015, 13(5): 515-524.
3
Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways[J]. Cancer Cell, 2016, 29(4): 452-463.
4
Qiu MT, Hu JW, Yin R, et al. Long noncoding RNA: an emerging paradigm of cancer research[J]. Tumour Biol, 2013, 34(2): 613-620.
5
Castro-Oropeza R, Melendez-Zajgla J, Maldonado V, et al. The emerging role of lncRNAs in the regulation of cancer stem cells[J]. Cell Oncol (Dordr), 2018, 41(6): 585-603.
6
Sui CJ, Zhou YM, Shen WF, et al. Long noncoding RNA GIHCG promotes hepatocellular carcinoma progression through epigenetically regulating miR-200b/a/429[J]. J Mol Med (Berl), 2016, 94(11): 1281-1296.
7
He ZH, Qin XH, Zhang XL, et al. Long noncoding RNA GIHCG is a potential diagnostic and prognostic biomarker and therapeutic target for renal cell carcinoma[J]. Eur Rev Med Pharmacol Sci, 2018, 22(1): 46-54.
8
Shi Y, Sun Y, Ding C, et al. China Experts Consensus on Icotinib for Non-small Cell Lung Cancer Treatment (2016 version)[J]. Zhongguo Fei Ai Za Zhi, 2016, 19(7): 489-494.
9
Quan L, Chen W, Shu Y. Current status and prospects of maintenance therapy in advanced stage non-small cell lung cancer[J]. Zhongguo Fei Ai Za Zhi, 2010, 13(6): 637-641.
10
Wang Q, Yang S, Wang K, et al. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer[J]. J Hematol Oncol, 2019, 12(1): 63.
11
Chi Y, Wang D, Wang J, et al. Long Non-Coding RNA in the Pathogenesis of Cancers[J]. Cells, 2019, 8(9): doi: 10.3390/cells8091015.
12
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions[J]. Natuer Rev Genet, 2009, 10(3): 155-159.
13
Song X, Cao G, Jing L, et al. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis[J]. J Cell Molecul Med, 2014, 18(6): 991-1003.
14
Meng Z, Xiaojun W, Hongbo S, et al. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer[J]. Oncotarget, 2016, 7(11): DOI:10.18632/oncotarget.7181.
15
裴 振,霍小蕾,田向阳,等. 长链非编码RNA MIAT在非小细胞肺癌中的表达及功能研究[J]. 中国病理生理杂志,2018, 34(4): 592-598.
16
Wang P, Chen D, Ma H, et al. LncRNA SNHG12 contributes to multidrug resistance through activating the MAPK/ Slug pathway by sponging miR-181a in non-small cell lung cancer[J]. Oncotarget, 2017, 8(48): 84086-84101.
17
张双美,王 斌,陈 怡,等. 长链非编码RNA PVT1对非小细胞肺癌细胞增殖和迁移能力的影响及其机制研究[J]. 中华全科医学,2019, 17(06): 897-901.
18
孙 燕,凌春华. 长链非编码RNA在非小细胞肺癌诊断、治疗中的应用进展[J]. 山东医药,2017, 57(22): 99-102.
19
Wang L, Ma L, Xu F, et al. Role of long non-coding RNA in drug resistance in non-small cell lung cancer[J]. Thorac Cancer, 2018, 9(7): 761-768.
20
Fan H, Shao ZY, Xiao YY, et al. Incidence and survival of non-small cell lung cancer in Shanghai: a population-based cohort study[J]. BMJ Open, 2015, 5(12): e009419.
21
Ma L, Wang Q, Gong Z, et al. Long noncoding RNA GIHCG enhanced tongue squamous cell carcinoma progression through regulating miR-429[J]. J Cell Biochem, 2018, 119(11): 9064-9071.
22
Zhang Y, Chen WJ, Gan TQ, et al. Clinical significance and effect of lncRNA HOXA11-AS in NSCLC:A study based on bioinformatics, In Vitro and in Vivo Verification[J]. Sci Rep, 2017, 7(1): 5567.
23
Yang YR, Zang SZ, Zhong CL, et al. Increased expression of the lncRNA PVT1 promotes tumorigenesis in non-small cell lung cancer[J]. Int J Clin Exp Pathol, 2014, 7(10): 6929-6935.
24
Sun C, Li S, Zhang F, et al. Long non-coding RNA NEAT1 promotes non-small cell lung cancer progression through regulation of miR-377-3p-E2F3 pathway[J]. Oncotarget, 2016, 7(32): 51784.
25
Cui J, Mo J, Luo M, et al. c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer[J]. Int J Clin Experiment Pathol, 2015, 8(10): 12400.
26
Li C, Wan L, Liu Z, et al. Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer[J]. Cancer letters, 2018, 418: 185-195.
27
Liu G, Jiang Z, Qiao M, et al. Lnc-GIHCG promotes cell proliferation and migration in gastric cancer through miR-1281 adsorption[J]. Mol Genet Genomic Med, 2019, 7(6): e711.
28
Zhang X, Mao L, Li L, et al. Long noncoding RNA GIHCG functions as an oncogene and serves as a serum diagnostic biomarker for cervical cancer[J]. J Cancer, 2019, 10(3): 672-681.
29
Xiang Z, Song S, Zhu Z, et al. LncRNAs GIHCG and SPINT1-AS1 Are Crucial Factors for Pan-Cancer Cells Sensitivity to Lapatinib[J]. Front Genet, 2019, 10: 25.
30
Sarfi M, Abbastabar M, Khalili E. Long noncoding RNAs biomarker-based cancer assessment [J]. J Cell Physiol, 2019, 234(10): 16971-16986.
31
Bhan A, Soleimani M, Mandal SS. Long Noncoding RNA and Cancer:A New Paradigm[J]. Cancer Res, 2017, 77(15): 3965-3981.
[1] 罗青杉, 梅海涛, 郝家领, 蔡锦锋, 周润楷, 温玉刚. 连接蛋白43通过调控细胞周期抑制结直肠癌的增殖机制研究[J]. 中华普通外科学文献(电子版), 2024, 18(05): 344-349.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[4] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[5] 韩晓宇, 李柯育, 赵志菲, 高建平. SNHG17过表达对非小细胞肺癌切除术预后的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 543-547.
[6] 刘松, 张进召, 贾艳云. 帕博利珠单抗治疗晚期非小细胞肺癌反应降低与抗生素预处理的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 553-557.
[7] 李多, 郝昭昭, 陈延伟, 南岩东. 血清PTX3表达与非小细胞肺癌骨转移的相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 558-562.
[8] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[9] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[10] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[11] 白丽丽, 江榆, 黄亮亮, 白莹, 张敏. 作业疗法在非小细胞肺癌患者术后康复中应用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 411-415.
[12] 李静静, 许金花, 吴国峰, 任亚俊, 张骞云. 伏美替尼一线治疗EGFR突变晚期NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 426-429.
[13] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[14] 张迅夫, 马金山, 蒋云龙, 加纳提·托勒恒, 侯昌剑, 萨伍提·斯拉吉丁. GATA3在非小细胞肺癌组织中的表达及临床病理意义[J]. 中华胸部外科电子杂志, 2024, 11(03): 175-179.
[15] 李子健, 王锐, 钟云鹏, 张迪轩, 梁韵娟, 杨超, 何建行, 李树本. 自体肺移植术在胸部恶性肿瘤中的临床应用[J]. 中华胸部外科电子杂志, 2024, 11(03): 193-200.
阅读次数
全文


摘要