切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (02) : 148 -153. doi: 10.3877/cma.j.issn.1674-6902.2020.02.005

论著

白藜芦醇对小细胞肺癌C-myc基因表达的调控研究
李王平1, 马李杰1, 潘蕾1, 金发光1,()   
  1. 1. 710038 西安,空军(第四)军医大学第二附属医院呼吸与危重症医学科
  • 收稿日期:2019-11-15 出版日期:2020-04-25
  • 通信作者: 金发光
  • 基金资助:
    国家自然科学基金资助项目(81071933)

Study of regulating effect of resveratoral on C-myc gene in human small cell lung cancer H446 cells

Wangping Li1, Lijie Ma1, Lei Pan1, Faguang Jin1,()   

  1. 1. Department of pulmonary and critical care medicaine, Tangdu Hospital, The Air Force Medical university, Xi′an 710038, China
  • Received:2019-11-15 Published:2020-04-25
  • Corresponding author: Faguang Jin
引用本文:

李王平, 马李杰, 潘蕾, 金发光. 白藜芦醇对小细胞肺癌C-myc基因表达的调控研究[J]. 中华肺部疾病杂志(电子版), 2020, 13(02): 148-153.

Wangping Li, Lijie Ma, Lei Pan, Faguang Jin. Study of regulating effect of resveratoral on C-myc gene in human small cell lung cancer H446 cells[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(02): 148-153.

目的

研究白藜芦醇对小细胞肺癌C-myc基因表达的影响,探讨其在小细胞肺癌中的可能抑癌机制。

方法

以人小细胞肺癌H446细胞系为研究对象,采取Western blot法和Real-Time PCR法检测不同浓度白藜芦醇及白藜芦醇作用不同时间后C-myc的表达变化,分别以NAC和顺铂为干预进行验证。

结果

Western blot和Real-time PCR检测结果显示白藜芦醇可调控人小细胞肺癌H446细胞C-myc的表达,并随着作用时间的延长和作用浓度的增加,C-myc的表达进一步下降,具有时间依赖和浓度依赖的特点,差异有统计学意义(P<0.05)。给予NAC干预后,可抑制白藜芦醇对C-myc蛋白表达的调控影响,呈现拮抗作用,差异均有统计学意义(P<0.05)。顺铂可抑制C-myc的表达,与白藜芦醇联用对C-myc调控具有协同作用,Western blot检测结果显示在胞浆蛋白中差异有统计学意义(P<0.05),但在胞核蛋白中,与白藜芦醇组相比,白藜芦醇与顺铂联用,差异无统计学意义(P>0.05)。Real-time PCR检测结果显示顺铂可使C-myc表达水平下调,与白藜芦醇联用具有协同作用,差异有统计学意义(P<0.05)。

结论

白藜芦醇对小细胞肺癌H446细胞的C-myc表达具有明显的影响,间接说明白藜芦醇对小细胞肺癌中的抑癌作用可能与myc基因有关。

Objective

The aim of the present study was to evaluate the effects of resveratrol on C-myc gene expression in small-cell lung cancer (SCLC) cell.

Methods

The H446 cell line of human small-cell lung cancer was used as the object of this study. The expression levels of C-myc were measured by western blot analysis and Real-time PCR in H446 cells treated with various concentrations of Res for 24 h and treated with the same concentration Res at different times. Cisplatin was used as the intervention for effect verification.

Results

The measure results of Western blot and Real-time PCR show that resveratrol has regulating effect on the expression of C-myc in H446 cells of human small-cell lung cancer. Along with the extension of the action time and the increase of the concentration, the expression of c-myc further decreased. These effects have the characteristic of concentration-and time-dependence, the difference has statistically significant (P<0.05). In addition, combined treatment with NAC and Res is found to be a inhibiting effect compared with either monotherapy while cisplatin and Res is found to be markedly more effective compared with either monotherapy, the difference has statistically significant (P0.05). However, the result of Western blot shows that the expression of C-myc in the cytonuclear protein has no significant difference in the combination group and the resveratrol group (P>0.05).

Conclusion

The present study demonstrated that resveratrol has a significant effect on C-myc expression in H446 cells. These findings suggest that the inhibiting effect of resveratrol on small cell lung cancer may be related to myc gene.

图2 不同浓度Res作用时蛋白的表达灰度分析(μg/ml )
图4 Res作用不同时间蛋白的表达灰度分析(μg/ml)
图6 NAC预处理后对蛋白表达的影响
图8 顺铂联合用药时蛋白表达变化
图12 顺铂联合用药时C-myc的表达变化
1
Hsieh TC, Wu JM. Resveratrol: Biological and pharmaceutical properties as anticancer molecule[J]. Biofactors, 2010, 36: 360-369.
2
Schnekenburger M, Dicato M, Diederich M. Plant-derived epigenetic modulators for cancer treatment and prevention[J]. Biotechnol Adv, 2014, 32: 1123-1132.
3
Chan S, Kantham S, Rao VM, et al. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer's disease[J]. Food Chem, 2016, 199: 185-194.
4
Blanquer-Rosselló MD, Hernández-López R, Roca P, et al. Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells[J]. Biochim Biophys Acta, 2017, 861: 431-440.
5
Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol: Mechanistic perspectives[J]. Cancer Lett, 2008, 269: 243-261.
6
Athar M, Back JH, Kopelovich L, et al. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms[J]. Arch Biochem Biophys, 2009, 486: 95-102.
7
Goswami SK, Das DK. Resveratrol and chemoprevention[J]. Cancer Lett, 2009, 284: 1-6.
8
Dang CV. MYC on the path to cancer[J]. Cell, 2012, 149(1): 22-35.
9
Beroukhim R, Mermel CH, Porter D, et al. The landscape of somatic copy-number alteration across human cancers[J]. Nature, 2010, 463(7283): 899-905.
10
Chen H, Liu H, Qing G. Targeting oncogenic Myc as a strategy for cancer treatment[J]. Signal Transduct Target Ther, 2018, 3(1): 5.
11
Wangping Li, Yun Shi, Ruixuan Wang, et al. Resveratrol promotes the sensitivity of small cell lung cancer H446 cell lines to cisplatin via mitochondrial apoptotic pathway[J]. Int J Oncol, 2018, 53: 2123-2130.
12
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
13
Okimoto RA, Bivona TG. Recent advances in personalized lung cancer medicine[J]. Pers Med, 2014, 11(3): 309-321.
14
Jang M, Cai L, Udeani GO, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes[J]. Science, 1997, 275(5297): 218-220.
15
Llijie Ma, wangping Li, ruixuan Wang, et al. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis[J]. Int J Oncol, 2015, 47(4): 1460-1468.
16
Dang CV. MYC on the path to cancer[J]. Cell, 2012, 149(1): 22-35.
17
Meyer N, Penn LZ. Reflecting on 25 years with MYC[J]. Nat Rev Cancer, 2008, 8(12): 976-990.
18
Adhikary S, Eilers M. Transcriptional regulation and transformation by Myc proteins[J]. Nat Rev Mol Cell Biol, 2005, 6(8): 635-645.
19
George J, Lim JS, Jang SJ, et al. Comprehensive genomic profiles of small cell lung cancer[J]. Nature, 2015, 524(7563): 47-53.
20
Semenova EA, Nagel R, Berns A, et al. Origins, genetic landscape,and emerging therapies of small cell lung cancer[J]. Genes Dev, 2015, 29(14): 1447-1462.
21
Helfrich BA, Kim J, Gao DX, et al. Barasertib(AZD1152), a small molecule Aurora B inhibitor, inhibits the growth of SCLC cell lines in vitro and in vivo[J]. Mol Cancer Ther, 2016, 15(10): 2314-2322.
22
Malynn BA, de Alboran IM, O′Hagan RC, et al. N-myc can functionally replace c-myc in murine development, cellular growth, and differentiation[J]. Genes Dev, 2000, 14(11): 1390-1399.
23
Di Giacomo S, Sollazzo M, Paglia S, et al. MYC, cell competition,and cell death in cancer[J]. Genes, 2017, 8(4): 668-679.
24
Lu Q, Hong W. Bcl2 enhances c-Myc-mediated MMP-2 expression of vascular smooth muscle cells[J]. Cell Signal, 2009, 21(7): 1054-1059.
25
Noujaim D, van Golen CM, van Golen KL, et al. N-Myc and Bcl-2 coexpression induces MMP-2 secretion and activation in human neuroblastoma cells[J]. Oncogene, 2002, 21(29): 4549-4557.
26
李王平,马李杰,潘 蕾,等. 白藜芦醇诱导小细胞肺癌H446细胞凋亡机制的研究[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(1): 15-23.
27
van Golen CM, Soules ME, Grauman AR, et al. N-Myc overexpression leads to decreased beta1 integrin expression and increased apoptosis in human neuroblastoma cells[J]. Oncogene, 2003, 22(17): 2664-2673.
28
van Golen CM, Castle VP, Feldman EL. IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma[J]. Cell Death Differ, 2000, 7(7): 654-665.
29
Lee MW, Kim DS, Kim HR, et al. Inhibition of N-myc expression sensitizes human neuroblastoma IMR-32 cells expressing caspase-8 to TRAIL[J]. Cell Prolif, 2019, 52(3): e12577.
30
Lu KV, Jong KA, Rajasekaran AK, et al. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line[J]. Lab Invest, 2004, 84(1): 8-20.
31
Grotzer MA, Castelletti D, Fiaschetti G, et al. Targeting Myc in pediatric malignancies of the central and peripheral nervous system[J]. Curr Cancer Drug Targets, 2009, 9(2): 176-188.
[1] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[2] 徐天亮, 程干思, 吴亚平, 龚荣, 胡洁, 段群娣, 李承慧. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 520-522.
[3] 魏婷婷, 胡小红, 龚自强, 熊鹿. 老年非小细胞肺癌组织ARPC2表达及与预后关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 584-586.
[4] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[5] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[6] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[7] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[8] 李哲, 高敬华, 李永生, 赵瑾. 阿帕替尼联合放化疗不能切除小细胞肺癌的临床疗效[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 352-354.
[9] 杨豪, 王云川, 陈有英. 硬膜外阻滞复合羟考酮镇痛在非小细胞肺癌患者中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 370-372.
[10] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[11] 仇丽敏, 胡航, 孙云浩, 孙健, 陈婷婷. NSCLC患者根治性切除术后复发风险分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 242-244.
[12] 邹琴, 龙玲, 叶容, 张小洪. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 278-280.
[13] 李多, 郝昭昭, 陈延伟, 南岩东. Wnt/β-Catenin通路促进非小细胞肺癌转移机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 281-284.
[14] 孙中华, 王晓晗, 接贵涛, 刘淑芳. EGFR突变非小细胞肺癌胸腔积液与外周血ctDNA丰度及EGFR-TKI疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 101-103.
[15] 郭丹, 冯琪雅, 吕丛海, 王波, 卢伟. 胸腔镜下肺叶切除术治疗非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 110-112.
阅读次数
全文


摘要