切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2020, Vol. 13 ›› Issue (06) : 764 -768. doi: 10.3877/cma.j.issn.1674-6902.2020.06.010

论著

肺剂量和炎性细胞因子在预测放疗诱导性肺毒性中的临床价值
沈会华1, 邢国柱1, 李悟1,()   
  1. 1. 830000 乌鲁木齐,新疆军区总医院心胸外科
  • 收稿日期:2020-04-18 出版日期:2020-12-25
  • 通信作者: 李悟
  • 基金资助:
    新疆维吾尔自治区自然科学基金(2016D01C399)

Clinical value of lung dose and inflammatory cytokines in predicting radiotherapy-induced pulmonary toxicity

Huihua Shen1, Guozhu Xing1, Wu Li1,()   

  1. 1. Cardiothoracic Surgery, General Hospital of Xinjiang Military Region, Urumchi 830000 China
  • Received:2020-04-18 Published:2020-12-25
  • Corresponding author: Wu Li
引用本文:

沈会华, 邢国柱, 李悟. 肺剂量和炎性细胞因子在预测放疗诱导性肺毒性中的临床价值[J]. 中华肺部疾病杂志(电子版), 2020, 13(06): 764-768.

Huihua Shen, Guozhu Xing, Wu Li. Clinical value of lung dose and inflammatory cytokines in predicting radiotherapy-induced pulmonary toxicity[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2020, 13(06): 764-768.

目的

分析平均肺剂量(MLD)和炎性细胞因子(IL-8和TGF-β1)组合预测放射性肺损伤(radiation-induced lung injury, RILT)的准确性和有效性。

方法

选择75例Ⅰ-Ⅲ期的NSCLC患者,通过使用三维适形技术给予放射疗法,在4~7周内每天以2.0~2.9 Gy的剂量递送44~87.9 Gy给患者。分别提取患者放射治疗前(pre),放射治疗2周(2 W),4周(4 W)的血液样品,测定细胞因子的表达含量。患者随访接受病史检查和体格检查以及胸部计算机断层扫描,随访终点为出现RILT症状,或肺炎、肺纤维化等症状。Logistic回归分析平均肺剂量(MLD)和炎性细胞因子(IL-8和TGF-β1)的表达变化以评估其与RILT的相关性,ROC曲线下面积(AUC)用于分析这些因素在预测RILT的特异性和敏感性。

结果

75例Ⅰ-Ⅲ期的NSCLC患者中65例出现RILT ,其中16例(24.6%)患者的RILT等级大于2。MLD,基线IL-8水平和TGF-β1 2 W/pre比率的AUC值分别为0.61(0.45,0.77),0.70(0.56,0.84)和0.68(0.53,0.83)。与MLD单独预测相比,MLD,基线IL-8水平和TGF-β1 2w/pre比率组合可将AUC的值从0.61提高到0.73(0.60,0.87)。

结论

IL-8和TGF-β1是NSCLC患者RILT的重要预测因子。MLD,IL-8水平和TGF-β1 2 W/pre比率的组合提供了更准确的模型来预测RILT2的风险。

Objective

Radiotherapy(RT) remains an important and potentially curative treatment for localized and locally advanced non-small cell lung cancer (NSCLC), but radiotherapy-induced lung toxicity (RILT) is one of the dose-limiting toxicities for radiotherapy in patients with non-small cell lung cancer. This study is to analyze the accuracy and effectiveness of the combination of mean lung dose (MLD) and inflammatory cytokines (IL-8 and TGF-β1) in predicting radiation-induced lung toxicity (RILT).

Methods

75 patients with stage Ⅰ-Ⅲ NSCLC treated with definitive radiotherapy (RT) were included in this study. Treatments of patients receiving definitive conventionally fractionated radiotherapy on a clinical trial for inoperable stages Ⅰ-Ⅲ lung cancer were prospectively evaluated. Radiotherapy was given by using a three-dimensional conformal technique. Intensity-modulated radiation therapy (IMRT) was used in only a few challenging cases. A median total physical dose of 70 Gy (range, 44~87.9 Gy) was delivered with 2.0~2.9 Gy daily fractions over 4~7 weeks using 6~16 MV photons. Circulating cytokine levels were measured before and at weeks 2 and 4 during RT. All patients were prospectively evaluated weekly during RT, with follow-up evaluation after completion of RT. At each follow-up, patients underwent a history review and physical examination as well as a chest computed tomography scan. The primary endpoint was symptomatic RILT, and higher radiation pneumonitis or symptomatic pulmonary fibrosis. Logistic regression was performed to evaluate the risk factors of RILT. The area under the curve (AUC) for the Receiver Operating Characteristic (ROC) curves were used for model assessment.

Results

75 patients with stage Ⅰ-Ⅲ NSCLC were included in this study, and 86% patients with RILT after receiving definitive conventionally fractionated radiotherapy. 16 of 65 patients (24.6%) developed RILT2. Lower pre-IL-8 and higher TGF-β1 2 W/pre ratio were associated with a higher risk of RILT2. Among the 30 cytokines measured, only IL-8 and TGF-β1 were significantly associated with the risk of RILT2. MLD, pre IL-8 level and TGF-β1 2 W/pre ratio were included in the final predictive model. Receiver operating characteristic (ROC) curves were evaluated for MLD, baseline IL-8 level, TGF-β1 2 W/pre ratio. The AUC was 0.61 (0.45, 0.77), 0.70 (0.56, 0.84) and 0.68 (0.53, 0.83) with MLD, baseline IL-8 level and TGF-β1 2 W/pre ratio, respectively. The AUC increased to 0.73 by combining MLD, pre-IL-8 and TGF-β1 2 W/pre ratio compared with 0.61 by MLD alone to predict RILT.

Conclusions

This study validated the predictive value of IL-8 and TGF-β1 for RILT. Pre IL-8 level and TGF-β1 2 W/pre ratio provided a more accurate model to predict the risk of RILT2 compared to MLD alone.

表1 患者炎性细胞因子水平
表2 RILT组患者IL-8和TGF-β1水平与RILT风险相关性
图1 ROC曲线
1
Tanoue LT. Staging of non-small cell lung cancer[J]. Sem Respir Crit Care Med, 2018, 29(3): 1-10.
2
权 琳,陈文萍,束永前. 晚期非小细胞肺癌维持治疗的现状与展望[J]. 中国肺癌杂志,2010, 13(6): 637-641.
3
任艳萍,吕 斌,郑向鹏. 立体定向放疗治疗早期非小细胞肺癌的现状与问题[J]. 实用肿瘤杂志,2017, 32(5): 401.
4
Prezzano KM, Ma SJ, Hermann GM, et al. Stereotactic body radiation therapy for non-small cell lung cancer: A review[J]. World J Clin Oncol, 2019, 10(1): 17-30.
5
Huang Y, Zhang W, Yu F, et al. The Cellular and Molecular Mechanism of Radiation-Induced Lung Injury.[J]. Med Sci Monitor Int Med J Exper Clin Res, 2017, 23: 3446-3450.
6
曹芳芳,郝光军,席俊峰. 非小细胞肺癌术后放疗后发生放疗相关肺毒性的危险因素分析[J]. 河北医学,2018, 24(1): 104-107.
7
陈晓东,宣 莹,段琼玉,等. 非小细胞肺癌患者放疗导致放射性肺损伤的相关因素分析[J]. 临床外科杂志,2017, 25(1): 46-48.
8
杜艳华,范廷勇. 放射性肺损伤预测因素[J]. 中华肿瘤防治杂志,2017, 24(17): 1256-1260.
9
王立东,谌娜娜,李蕊洁,等. 放射性食管炎的临床研究进展[J]. 实用肿瘤杂志,2017, 32(5): 474-478.
10
Hart JP, Broadwater G, Rabbani Z, et al. Cytokine profiling for prediction of symptomatic radiation-induced lung injury.[J]. Int J Rad Oncol Biol Phys, 2005, 63(5): 1448-1454.
11
李芳娟,王 谨,陈 明. 放射性肺损伤预测因子研究进展[J]. 肿瘤学杂志,2017, 23(5): 359-365.
12
冀 为,赵元元,张 飞,等. TGF-β与细胞内信号通路的交互作用在肿瘤研究中的进展[J]. 中国肿瘤临床,2018, 45(15): 44-47.
13
Bogusawska J, Rodzik K, Popawski P, et al. TGF-β1 targets a microRNA network that regulates cellular adhesion and migration in renal cancer.[J]. Cancer Letters, 2017, 412: S0304383517306560.
14
赵亚亚,钟 成,李 悦,等. TGF-β1介导的Smad通路在肾脏纤维化中的作用及机制[J]. 解放军预防医学杂志,2018, 205(4): 6-9+37.
15
Kong FM, Hayman JA, Griffith KA, et al. Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis[J]. Int J Radiat Oncol Biol Phys, 2006, 65: 1075-1086.
16
Wu QQ, Xiao Y, Jiang XH, et al. Evodiamine attenuates TGF-β1-induced fibroblast activation and endothelial to mesenchymal transition[J]. Molecul Cellul Biochem, 2017, 430(1-2): 1-10.
17
Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research[J]. Int J Radiat Oncol Biol Phys, 2006, 66: 1281-1293.
18
Anscher MS, Peters WP, Reisenbichler H, et al. Transforming growth factor beta as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer[J]. N Engl J Med, 1993, 328: 1592-1598.
19
王 静,贾敬好,杨海芳,等. 非小细胞肺癌放疗前后血清TGF-β1水平测定的临床意义[J]. 河北医科大学学报,2017, 38(6): 654-658.
20
Zhao L, Wang L, Ji W, et al. Elevation of plasma TGF-beta1 during radiation therapy predicts radiation-induced lung toxicity in patients with non-small-cell lung cancer: a combined analysis from Beijing and Michigan[J]. Int J Radiat Oncol Biol Phys, 2009, 74: 1385-1390.
21
庄贤栩,裴仁治,陆 滢,等. 复方皂矾丸联合重组人粒细胞刺激因子注射液对白血病化疗后白细胞减少患者血清IL-6、IL-8及G-CSF水平影响研究[J]. 中华中医药学刊,2017, 5: 1275-1277.
22
Alfaro C, Sanmamed MF, Rodríguezruiz ME, et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up.[J]. Cancer Treatment Reviews, 2017, 60: 24-31.
23
雷云洁,杨晋辉. IL-8与自身免疫性肝病的关系[J]. 临床肝胆病杂志,2019, 35(2): 180-182.
24
宋淑范,辛 平. 炎症细胞因子IL-1β,IL-6, TNF-α,IL-8对慢性阻塞性肺疾病模型小鼠肺癌生长及转移的影响[J]. 临床与病理杂志,2017, 37(11): 2323-2331.
25
Kasperskazajac A, Grzanka A, Damasiewiczbodzek A, et al. Elevated plasma il-8 concentration is related to severity of systemic inflammation in chronic spontaneous urticaria.[J]. J Biol Regul Homeost Agents, 2017, 31(4): 957-961.
26
苗亚静,靳 芳,徐鹏育,等. IL-8在肺癌中的研究进展[J]. 天津医药,2017, 45(12): 1333-1336.
27
蒋雪超,崔洪霞,宋红强. V20、MLD与放射性肺损伤的相关性研究[J]. 中国癌症防治杂志,2011, 3(3): 238-240.
28
Pan WY, Bian C, Zou GL, et al. Combing NLR, V20 and mean lung dose to predict radiation induced lung injury in patients with lung cancer treated with intensity modulated radiation therapy and chemotherapy[J]. Oncotarget, 2017, 8(46): 81387-81393.
29
Mavroidis P, Pearlstein KA, Dooley J, et al. Fitting NTCP models to bladder doses and acute urinary symptoms during post-prostatectomy radiotherapy[J]. Radiation Oncology, 2018, 13(1): 17.
30
蔡俊涛,陈 凡,王 财,等. 非小细胞肺癌混合调强放疗剂量学研究[J]. 中华肿瘤防治杂志,2017, 24(23): 1668-1672.
31
解佳奇,蒋 俊,任 伟,等. 非小细胞肺癌调强放疗与螺旋断层放疗剂量学的比较研究[J]. 实用癌症杂志,2017, 32 (3): 479-483.
32
宋 成,陈金晶. 螺旋断层放疗在非小细胞肺癌治疗中的剂量学优势分析[J]. 现代实用医学,2017, 29(12): 1594-1595.
[1] 王若岩, 贾琳娇, 孔舒欣, 范盼红, 王磊, 李文涛. 原发性肺癌乳腺转移一例[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 248-250.
[2] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[3] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[4] 韩晓宇, 李柯育, 赵志菲, 高建平. SNHG17过表达对非小细胞肺癌切除术预后的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 543-547.
[5] 刘松, 张进召, 贾艳云. 帕博利珠单抗治疗晚期非小细胞肺癌反应降低与抗生素预处理的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 553-557.
[6] 李多, 郝昭昭, 陈延伟, 南岩东. 血清PTX3表达与非小细胞肺癌骨转移的相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 558-562.
[7] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[8] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[9] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[10] 白丽丽, 江榆, 黄亮亮, 白莹, 张敏. 作业疗法在非小细胞肺癌患者术后康复中应用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 411-415.
[11] 李静静, 许金花, 吴国峰, 任亚俊, 张骞云. 伏美替尼一线治疗EGFR突变晚期NSCLC脑转移的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 426-429.
[12] 蒋丽芳, 林冰. 桑菊清解汤联合左氧氟沙星治疗社区获得性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 458-461.
[13] 尹炳驿, 张楚楚, 刘艺, 林洪生. 益气清金汤加味治疗晚期非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 462-465.
[14] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[15] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
阅读次数
全文


摘要