1 |
李慧婷,莫冉冉,宋 鹏,等. 非小细胞肺癌免疫检查点抑制剂治疗进展[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 382-386.
|
2 |
吴国明,钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
|
3 |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2017, 71(1): 7-33.
|
4 |
Inamura K. Lung Cancer: Understanding its molecular pathology and the 2015 WHO classification[J]. Front Oncol, 2017, 7: 193.
|
5 |
Morrissey SM, Zhang F, Ding C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming[J]. Cell Metab, 2021, 33(10): 2040-2058.e10.
|
6 |
Ettinger DS, Wood DE, Aisner DL, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. J Natl Compr Canc Netw, 2021, 19: 254-266.
|
7 |
Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084.
|
8 |
Sumitomo R, Hirai T, Fujita M, et al. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer[J]. Exp Ther Med, 2019, 18(6): 4490-4498.
|
9 |
Jackute J, Zemaitis M, Pranys D, et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer[J]. BMC Immunol, 2018, 19(1): 3.
|
10 |
Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers[J]. Front Oncol, 2020, 10: 566511.
|
11 |
Xu F, Wei Y, Tang Z, et al. Tumor-associated macrophages in lung cancer: Friend or foe? (Review)[J]. Mol Med Rep, 2020, 22(5): 4107-4115.
|
12 |
Najafi M, Hashemi Goradel N, Farhood B, et al. Macrophage polarity in cancer: A review[J]. J Cell Biochem, 2019, 120(3): 2756-2765.
|
13 |
Sedighzadeh SS, Khoshbin AP, Razi S, et al. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications[J]. Transl Lung Cancer Res, 2021, 10(4): 1889-1916.
|
14 |
Yonemitsu K, Miyasato Y, Shiota T, et al. Soluble factors involved in cancer cell-macrophage interaction promote breast cancer growth[J]. Anticancer Res, 2021, 41(9): 4249-4258.
|
15 |
Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma[J]. Cancer Cell, 2021, 39(6): 779-792.e11.
|
16 |
Yang C, Dou R, Wei C, et al. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis[J]. Mol Ther, 2021, 29(6): 2088-2107.
|
17 |
Miller M, Hanna N. Advances in systemic therapy for non-small cell lung cancer[J]. Bmj, 2021, 375: n2363.
|
18 |
Nagano T, Tachihara M, Nishimura Y. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer[J]. Curr Cancer Drug Targets, 2021, 19(8): 595-630.
|
19 |
Chen R, Manochakian R, James L, et al. Emerging therapeutic agents for advanced non-small cell lung cancer[J]. J Hematol Oncol, 2020, 13(1): 58.
|
20 |
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731.
|
21 |
Malfitano AM, Pisanti S, Napolitano F, et al. Tumor-associated macrophage status in cancer treatment[J]. Cancers (Basel), 2020, 12(7): 1987.
|
22 |
Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995.
|
23 |
Schmall A, Al-Tamari HM, Herold S, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer[J]. Am J Respir Crit Care Med, 2015, 191(4): 437-447.
|
24 |
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2015, 513(7519): 559-563.
|
25 |
Pritchard A, Tousif S, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization[J]. Cells, 2020, 9(5): 1303.
|
26 |
Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor[J]. Mol Immunol, 2020, 117: 201-215.
|
27 |
Fei L, Ren X, Yu H, et al. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds?[J]. Front Immunol, 2021, 12: 771210.
|
28 |
Korbecki J, Kojder K, Simińska D, et al. CC Chemokines in a Tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412.
|
29 |
Ishida Y, Kuninaka Y, Yamamoto Y, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. J Invest Dermatol, 2020, 140(10): 1951-1961.e6.
|
30 |
Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41.
|
31 |
Tang ZR, Zhang R, Lian ZX, et al. Estrogen-receptor expression and function in female reproductive disease[J]. Cells, 2019, 8(10): 1123.
|
32 |
Farcas AM, Nagarajan S, Cosulich S, et al. Genome-wide estrogen receptor activity in breast cancer[J]. Endocrinology, 2021, 162(2): 224.
|
33 |
Hwang NM, Stabile LP. Estrogen receptor ß in cancer: To ß(e) or not to ß(e)?[J]. Endocrinology, 2021, 162(11): 62.
|
34 |
He M, Yu W, Chang C, et al. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways[J]. Mol Oncol, 2020, 14(8): 1779-1799.
|
35 |
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499.
|
36 |
Sepesi B, Cuentas EP, Canales JR, et al. Programmed death cell ligand 1 (PD-L1) is associated with survival in stage I non-small cell lung cancer[J]. Semin Thorac Cardiovasc Surg, 2017, 29(3): 408-415.
|
37 |
Zhang X, Zeng Y, Qu Q, et al. PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer[J]. Int J Clin Oncol, 2017, 22(6): 1026-1033.
|
38 |
Zhang Y, Du W, Chen Z, et al. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma[J]. Exp Cell Res, 2017, 359(2): 449-457.
|
39 |
Liu Y, Zugazagoitia J, Ahmed FS, et al. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy[J]. Clin Cancer Res, 2020, 26(4): 970-977.
|
40 |
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680.
|
41 |
Reina-Campos M, Moscat J, Diaz-Meco M. Metabolism shapes the tumor microenvironment[J]. Curr Opin Cell Biol, 2021, 48: 47-53.
|
42 |
Certo M, Tsai CH, Pucino V, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments[J]. Nat Rev Immunol, 2021, 21(3): 151-161.
|
43 |
Harmon C, O′Farrelly C, Robinson MW. The immune consequences of lactate in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1259: 113-124.
|
44 |
Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle, 2018, 17(4): 428-438.
|
45 |
Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression[J]. J Clin Invest, 2019, 129(2): 631-646.
|
46 |
Chinopoulos C. Succinate in ischemia: Where does it come from?[J]. Int J Biochem Cell Biol, 2019, 115: 105580.
|