切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (05) : 742 -745. doi: 10.3877/cma.j.issn.1674-6902.2022.05.036

综述

巨噬细胞与肿瘤细胞间相互作用对NSCLC发生发展的影响
何晓梅1, 姜露1, 张克斌1,(), 余华1,()   
  1. 1. 400037 重庆,陆军(第三)军医大学第二附属医院临床医学研究中心
  • 收稿日期:2022-05-17 出版日期:2022-10-25
  • 通信作者: 张克斌, 余华
  • 基金资助:
    国家自然科学基金资助项目(31872634)

Interaction of macrophages and tumor cells on the development of NSCLC

Xiaomei He1, Lu Jiang1, Kebin Zhang1()   

  • Received:2022-05-17 Published:2022-10-25
  • Corresponding author: Kebin Zhang
引用本文:

何晓梅, 姜露, 张克斌, 余华. 巨噬细胞与肿瘤细胞间相互作用对NSCLC发生发展的影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 742-745.

Xiaomei He, Lu Jiang, Kebin Zhang. Interaction of macrophages and tumor cells on the development of NSCLC[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(05): 742-745.

肺癌仍是全球肿瘤中患病率及病死率最高的恶性肿瘤之一[1,2,3]。据世界卫生组织(WHO)国际癌症研究中心报道,每年全球新增肺癌患者人数约为120万,非小细胞肺癌(non-small-cell lung cancer, NSCLC)占比就高达85%[4]。据报道,约有20%~54%的NSCLS患者肿瘤会发生转移[5]。NSCLC的转移,特别是脑转移,是导致其诱发高死亡率的主要原因。据统计,确诊的NSCLC患者5年生存期约为26%,而肿瘤发生转移后患者的5年期生存率不到6%[6]。巨噬细胞作为参与机体免疫调节的重要效应细胞,其在肿瘤的发生、发展中起到至关重要的作用。在肿瘤微环境(tumor microenvironment, TME)中,肿瘤相关巨噬细胞(tumor-associated macrophages, TAMs)是浸润比例最高的免疫细胞,其占比高达50%[7]。TAMs浸润高的NSCLC肿瘤组织,患者预后较差[8,9],提示TAMs是促进NSCLC发生、发展的重要环节。TAMs可通过促进NSCLC细胞的活性、增殖、转移、干性、上皮间质转化(epithelial-mesenchymal transition, EMT)以及肿瘤血管生成、TME免疫抑制等多种方式,促进肿瘤的发生、发展[10,11]。TAMs的促/抑肿瘤效应,除受到TME中的促/抗炎细胞因子、缺氧、酸化等因素影响外,其还与细胞外基质和浸润的髓源性抑制细胞(myeloid-derived suppressor cells, MDSC)、调节性T细胞(regulatory T cells, Tregs)等免疫细胞以及基质细胞(如成纤维细胞和肿瘤血管内皮细胞)相关[12]。TAMs与NSCLC、乳腺癌、恶性胶质瘤和结肠癌等多种肿瘤细胞间存在的直接或间接相互作用,细胞间相互作用对于TAMs发挥促肿瘤效应,以及对肿瘤的生长和转移均具有重要作用[13,14,15,16]。NSCLC致病机制复杂、影响因素众多,对其研究的深入程度仍十分有限[17,18,19]。本文从TAMs与肺癌细胞间相互作用出发,综述了影响其相互作用的可能机制,以及细胞间相互作用对TAMs的极化和对NSCLC发生、发展的影响。

1
李慧婷,莫冉冉,宋 鹏,等. 非小细胞肺癌免疫检查点抑制剂治疗进展[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(3): 382-386.
2
吴国明,钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
3
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2017, 71(1): 7-33.
4
Inamura K. Lung Cancer: Understanding its molecular pathology and the 2015 WHO classification[J]. Front Oncol, 2017, 7: 193.
5
Morrissey SM, Zhang F, Ding C, et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming[J]. Cell Metab, 2021, 33(10): 2040-2058.e10.
6
Ettinger DS, Wood DE, Aisner DL, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. J Natl Compr Canc Netw, 2021, 19: 254-266.
7
Pan Y, Yu Y, Wang X, et al. Tumor-associated macrophages in tumor immunity[J]. Front Immunol, 2020, 11: 583084.
8
Sumitomo R, Hirai T, Fujita M, et al. M2 tumor-associated macrophages promote tumor progression in non-small-cell lung cancer[J]. Exp Ther Med, 2019, 18(6): 4490-4498.
9
Jackute J, Zemaitis M, Pranys D, et al. Distribution of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer[J]. BMC Immunol, 2018, 19(1): 3.
10
Larionova I, Tuguzbaeva G, Ponomaryova A, et al. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers[J]. Front Oncol, 2020, 10: 566511.
11
Xu F, Wei Y, Tang Z, et al. Tumor-associated macrophages in lung cancer: Friend or foe? (Review)[J]. Mol Med Rep, 2020, 22(5): 4107-4115.
12
Najafi M, Hashemi Goradel N, Farhood B, et al. Macrophage polarity in cancer: A review[J]. J Cell Biochem, 2019, 120(3): 2756-2765.
13
Sedighzadeh SS, Khoshbin AP, Razi S, et al. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications[J]. Transl Lung Cancer Res, 2021, 10(4): 1889-1916.
14
Yonemitsu K, Miyasato Y, Shiota T, et al. Soluble factors involved in cancer cell-macrophage interaction promote breast cancer growth[J]. Anticancer Res, 2021, 41(9): 4249-4258.
15
Hara T, Chanoch-Myers R, Mathewson ND, et al. Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma[J]. Cancer Cell, 2021, 39(6): 779-792.e11.
16
Yang C, Dou R, Wei C, et al. Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis[J]. Mol Ther, 2021, 29(6): 2088-2107.
17
Miller M, Hanna N. Advances in systemic therapy for non-small cell lung cancer[J]. Bmj, 2021, 375: n2363.
18
Nagano T, Tachihara M, Nishimura Y. Molecular mechanisms and targeted therapies including immunotherapy for non-small cell lung cancer[J]. Curr Cancer Drug Targets, 2021, 19(8): 595-630.
19
Chen R, Manochakian R, James L, et al. Emerging therapeutic agents for advanced non-small cell lung cancer[J]. J Hematol Oncol, 2020, 13(1): 58.
20
Wu K, Lin K, Li X, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731.
21
Malfitano AM, Pisanti S, Napolitano F, et al. Tumor-associated macrophage status in cancer treatment[J]. Cancers (Basel), 2020, 12(7): 1987.
22
Boutilier AJ, Elsawa SF. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995.
23
Schmall A, Al-Tamari HM, Herold S, et al. Macrophage and cancer cell cross-talk via CCR2 and CX3CR1 is a fundamental mechanism driving lung cancer[J]. Am J Respir Crit Care Med, 2015, 191(4): 437-447.
24
Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2015, 513(7519): 559-563.
25
Pritchard A, Tousif S, Wang Y, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization[J]. Cells, 2020, 9(5): 1303.
26
Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor[J]. Mol Immunol, 2020, 117: 201-215.
27
Fei L, Ren X, Yu H, et al. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds?[J]. Front Immunol, 2021, 12: 771210.
28
Korbecki J, Kojder K, Simińska D, et al. CC Chemokines in a Tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4[J]. Int J Mol Sci, 2020, 21(21): 8412.
29
Ishida Y, Kuninaka Y, Yamamoto Y, et al. Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis[J]. J Invest Dermatol, 2020, 140(10): 1951-1961.e6.
30
Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41.
31
Tang ZR, Zhang R, Lian ZX, et al. Estrogen-receptor expression and function in female reproductive disease[J]. Cells, 2019, 8(10): 1123.
32
Farcas AM, Nagarajan S, Cosulich S, et al. Genome-wide estrogen receptor activity in breast cancer[J]. Endocrinology, 2021, 162(2): 224.
33
Hwang NM, Stabile LP. Estrogen receptor ß in cancer: To ß(e) or not to ß(e)?[J]. Endocrinology, 2021, 162(11): 62.
34
He M, Yu W, Chang C, et al. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways[J]. Mol Oncol, 2020, 14(8): 1779-1799.
35
Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity[J]. Nature, 2017, 545(7655): 495-499.
36
Sepesi B, Cuentas EP, Canales JR, et al. Programmed death cell ligand 1 (PD-L1) is associated with survival in stage I non-small cell lung cancer[J]. Semin Thorac Cardiovasc Surg, 2017, 29(3): 408-415.
37
Zhang X, Zeng Y, Qu Q, et al. PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer[J]. Int J Clin Oncol, 2017, 22(6): 1026-1033.
38
Zhang Y, Du W, Chen Z, et al. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma[J]. Exp Cell Res, 2017, 359(2): 449-457.
39
Liu Y, Zugazagoitia J, Ahmed FS, et al. Immune cell PD-L1 colocalizes with macrophages and is associated with outcome in PD-1 pathway blockade therapy[J]. Clin Cancer Res, 2020, 26(4): 970-977.
40
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward[J]. Nat Rev Cancer, 2021, 21(10): 669-680.
41
Reina-Campos M, Moscat J, Diaz-Meco M. Metabolism shapes the tumor microenvironment[J]. Curr Opin Cell Biol, 2021, 48: 47-53.
42
Certo M, Tsai CH, Pucino V, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments[J]. Nat Rev Immunol, 2021, 21(3): 151-161.
43
Harmon C, O′Farrelly C, Robinson MW. The immune consequences of lactate in the tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1259: 113-124.
44
Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle, 2018, 17(4): 428-438.
45
Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression[J]. J Clin Invest, 2019, 129(2): 631-646.
46
Chinopoulos C. Succinate in ischemia: Where does it come from?[J]. Int J Biochem Cell Biol, 2019, 115: 105580.
[1] 牛海刚, 郭文科. 三阴性乳腺癌组织中双特异性磷酸酶14与核受体相互作用蛋白1的表达及预后价值[J]. 中华乳腺病杂志(电子版), 2024, 18(04): 199-205.
[2] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[3] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[4] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[5] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[6] 韩晓宇, 李柯育, 赵志菲, 高建平. SNHG17过表达对非小细胞肺癌切除术预后的意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 543-547.
[7] 刘松, 张进召, 贾艳云. 帕博利珠单抗治疗晚期非小细胞肺癌反应降低与抗生素预处理的关系[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 553-557.
[8] 李多, 郝昭昭, 陈延伟, 南岩东. 血清PTX3表达与非小细胞肺癌骨转移的相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 558-562.
[9] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[10] 杨静, 附舰, 康艳霞. 血浆ctDNA T790M突变和总代谢肿瘤体积对晚期EGFR突变NSCLC患者TKIs治疗及预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 379-384.
[11] 赵海燕, 靳海涛, 孔莺, 何瑞远. 血浆NGS-ctDNA对EGFR-TKIs治疗晚期NSCLC患者的预后意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 385-391.
[12] 白丽丽, 江榆, 黄亮亮, 白莹, 张敏. 作业疗法在非小细胞肺癌患者术后康复中应用分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 411-415.
[13] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[14] 张迅夫, 马金山, 蒋云龙, 加纳提·托勒恒, 侯昌剑, 萨伍提·斯拉吉丁. GATA3在非小细胞肺癌组织中的表达及临床病理意义[J]. 中华胸部外科电子杂志, 2024, 11(03): 175-179.
[15] 李子健, 王锐, 钟云鹏, 张迪轩, 梁韵娟, 杨超, 何建行, 李树本. 自体肺移植术在胸部恶性肿瘤中的临床应用[J]. 中华胸部外科电子杂志, 2024, 11(03): 193-200.
阅读次数
全文


摘要