切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (06) : 782 -786. doi: 10.3877/cma.j.issn.1674-6902.2022.06.003

论著

肺腺癌病理类型转化特征及耐药机制分析
马蓉蓉1, 明宗娟1, 李维1, 张德信1, 杨拴盈1,()   
  1. 1. 710061 西安,西安交通大学附属第二医院
  • 收稿日期:2022-04-18 出版日期:2022-12-25
  • 通信作者: 杨拴盈
  • 基金资助:
    陕西省重点研发计划(2021SF-039)

Characteristics and mechanism of pathological transformation of lung adenocarcinoma

Rongrong Ma1, Zongjuan Ming1, Wei Li1, Dexin Zhang1, Shuanying Yang1,()   

  1. 1. The Second Affiliated Hospital of Xi′an Jiaotong University, Xi′an 710061, China
  • Received:2022-04-18 Published:2022-12-25
  • Corresponding author: Shuanying Yang
引用本文:

马蓉蓉, 明宗娟, 李维, 张德信, 杨拴盈. 肺腺癌病理类型转化特征及耐药机制分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 782-786.

Rongrong Ma, Zongjuan Ming, Wei Li, Dexin Zhang, Shuanying Yang. Characteristics and mechanism of pathological transformation of lung adenocarcinoma[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(06): 782-786.

目的

分析肺腺癌转化为鳞状细胞癌(small cell lung cancer, SCC)和小细胞肺癌(squamous cell carcinoma, SCLC)的可能机制及治疗策略。

方法

选择2017年1月至2022年2月我院收治的肺腺癌转化为SCLC及SCC患者7例为对象,分析临床病理特征及基因检测结果,随访并记录转归及预后。

结果

7例肺腺癌转化前病例1未检测到驱动基因,病例3为ROS1融合,其余为EGFR突变,病例6伴随TP53、BRCA1突变;转化后SCC 5例,SCLC 2例,转化后病例1检测到ALK融合,病例3、5和病例6保持原有突变,其余病例转化后未完善基因检测;7例肺腺癌转化前TKI中位治疗时间14个月(0~74个月)。初诊时,2例SCC SCC-Ag升高,1例SCLC NSE升高;转化后1例SCC SCC-Ag升高,1例SCLC NSE水平升高约4.7倍,2例SCLC Pro-GRP升高约16倍。7例中位转化时间27个月(11~92个月),SCC 27个月,SCLC 11个月。化疗为基础的综合治疗,一线治疗ORR 100%, DCR 100%,转化后一线治疗中位PFS 7个月,OS为9个月,转化后SCLC与SCC的一线治疗中位PFS分别为7个月和8个月,OS为9个月和8个月;性别、吸烟、初始接受TKI治疗大于12个月、接受三代EGFR-TKI治疗、EGFR突变对转化时间影响无统计学意义(P>0.05)。

结论

病理类型转化是肺腺癌重要的耐药机制之一,SCC-Ag、NSE、Pro-GRP水平升高及TP53突变可能与病理类型转分化有关;转化后一线化疗具有临床意义。

Objective

To analyze the clinical features of LUAD transformed into SCC or SCLC and explore its possible molecular mechanism and treatment.

Method

The clinical characteristics and genetic tests of 7 LUAD patients transformed into SCC or SCLC were retrospectively analyzed. The 7 patients were followed up by telephone, and the outcome and prognosis of the patients were recorded.

Result

Before the transformation of the 7 LUAD patients, case 1 detected no driver gene, case 3 was ROS1 fusion, and the others were EGFR mutations; case 6 was accompanied by TP53 and BRCA1 mutations. After transformation, 5 cases were SCC and 2 cases were SCLC; case 1 detected ALK fusion, cases 3, 5 and 6 remained original mutations. The rest cases didn′t receive the genetic test after transformation. The median time of taking TKIs was 14 months (0-74 months). At initial diagnosis, SCC-Ag was higher than the upper limit of normal in 2 of the patients transformed into SCC; NSE was higher than the upper limit of normal in 1 of the patients transformed into SCLC. After transformation, SCC-Ag was higher than the upper limit of normal in 1 of the patients transformed into SCC; NSE was about 4.7 times higher than the initial level in 1 of the patients transformed into SCLC; Pro-GRP in 2 SCLC patients was about 16 times higher than the initial level. The median transformation time of 7 LUAD patients was 27 months (11-92 months), the median transformation time of SCC was 27 months, and SCLC was 11 months. All patients received chemotherapy-based comprehensive therapy after transformation. The ORR of first-line therapy was 100%, the DCR was 100%, and the median PFS of first-line therapy was 7 months. the median OS after transformation was 9 months. The median OS of SCLC and SCC after transformation was 9 months and 8 months, respectively; and the median PFS of first-line therapy was 7 months and 8 months, respectively. Gender, smoking, initial TKI treatment for more than 12 months, third-generation TKI treatment, and EGFR mutation had no significant effect on transformation time(P>0.05).

Conclusion

Pathological transformation is one of the important drug resistance mechanisms of LUAD. Elevated levels of SCC-Ag, NSE, Pro-GRP and TP53 mutation may be related to pathological transformation; first-line chemotherapy can still benefit after transformation.

表1 7例肺腺癌转化前的临床特征及治疗情况
表2 7例肺腺癌转化后的临床特征及治疗情况
表3 肺腺癌转化前后的病理特征
1
吴国明,钱桂生. 非小细胞肺癌靶向治疗研究进展及新理念[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(4): 405-408.
2
徐 瑜,白 莉. 广泛期小细胞肺癌免疫治疗新理念[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(4): 407-411.
3
Travis WD, Brambilla E, Nicholson A G, et al. The 2015 world health organization classification of lung tumors impact of genetic, clinical and radiologic advances since the 2004 classification-sciencedirect[J]. J Thorac Oncol, 2015, 10(9): 1243-1260.
4
陈玥清,陈雨婷,童欣媛,等. 腺鳞癌转化在肺癌耐药中的功能和机制研究[J]. 生物医学转化2021, 2(1): 39-49.
5
Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clin Cancer Res, 2013, 19(8): 2240-2247.
6
Sutherland KD, Proost N, Brouns I, et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1in distinct cell types of adult mouse lung[J]. Cancer Cell, 2011, 19(6): 754-764.
7
Camolotto SA, Pattabiraman S, Mosbruger TL, et al. FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer[J]. ELife, 2018, 26(7): e38579- e38607.
8
Gao Y, Zhang W, Han X, et al. Erratum: YAP inhibits squamous transdifferentiation of Lkb1-deficient lung adenocarcinoma through ZEB2-dependent DNp63 repression[J]. Nature Communicat, 2014, 5(1): 4629-4643.
9
Han X, Li F, Fang Z, et al. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma[J]. Nature Publish Group, 2014, 5(1): 3261-3274.
10
Li F, Han X, Li F, et al. LKB1 inactivation elicits a redox imbalance to modulate non-small cell lung cancer plasticity and therapeutic response[J]. Cancer cell, 2015, 27(5): 698-711.
11
Zhang H, Brainson CF, Koyama S, et al. Lkb1 inactivation drives lung cancer lineage switching governed by polycomb repressive complex 2[J]. Nature Communicat, 2017, 7(8): 14922-14936.
12
Quintanal-Villalonga A, Taniguchi H, Zhan YA, et al. Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation[J]. J Hematol Oncol, 2021, 14(1): 170-189.
13
Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer[J]. Nat Rev Dis Primers, 2021, 7(1): 3-4.
14
Hamilton G, Rath B, Ulsperger E. How to target small cell lung cancer[J]. Oncosc, 2015, 2(8): 684-692.
15
Park KS, Liang MC, Raiser DM, et al. Characterization of the cell of origin for small cell lung cancer[J]. Cell Cycle, 2011, 10(16): 2806-2815.
16
Dick FA, Goodrich DW, Sage J, et al. Non-canonical functions of the RB protein in cancer[J]. Nat Rev Cancer, 2018, 18(7): 442-451.
17
Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance[J]. Science, 2017, 355(6320): 78-83.
18
Sutherland KD, Proost N, Brouns I, et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung cancer cell[J]. 2011, 19(6): 754-764.
19
Wang S, Xie T, Hao X, et al Comprehensive analysis of treatment modes and clinical outcomes of small cell lung cancer transformed from epidermal growth factor receptor mutant lung adenocarcinoma[J]. Thorac Cancer, 12(19): 2585-2593.
20
Lee JK, Lee J, Kim S, et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas [J] . J Clin Oncol, 2017, 35(26): 3065-3074.
21
Offin M, Chan JM, Tenet M, et al. Concurrent RB1 and TP53 alterations define a subset of EGFR-mutant lung cancers at risk for histologic transformation and inferior clinical outcomes[J]. J Thorac Oncol, 2019, 14(10): 1784-1793.
22
Oser MG, Niederst MJ, Sequist LV, et al. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin[J]. Lancet Oncol, 2015, 16(4): e165-e172.
23
Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Translat Med, 2011, 3(75): 75ra26.
24
Schoenfeld AJ, Chan JM, Kubota D, et al. Tumor analyses reveal squamous transformation and off-target alterations as early resistance mechanisms to first-line osimertinib in EGFR-mutant lung cancer[J]. Clin Cancer Res, 2020, 26(11): 2654-2663.
25
Nagaraj AS, Lahtela J, Hemmes A, et al. Cell of origin links histotype spectrum to immune microenvironment diversity in non-small-cell lung cancer driven by mutant kras and loss of Lkb1[J]. Cell Reports, 2017, 18(3): 673-684.
26
Ferrer L, Levra MG, Brevet M, et al. A brief report of transformation from non-small cell to small cell lung cancer: Molecular and therapeutic characteristics[J]. J Thorac Oncol, 2018, 14(1): 130-134.
27
Shi X, Duan H, Liu X, et al. Genetic alterations and protein expression in combined small cell lung cancers and small cell lung cancers arising from lung adenocarcinomas after therapy with tyrosine kinase inhibitors[J]. Oncotarget, 2016, 7(23): 34240-34249.
28
张红军,房延凤,谢永宏,等. 肺癌患者异常糖链糖蛋白与传统肿瘤标志物的相关性分析[J/CD]. 中华肺部疾病杂志(电子版), 2019, 12(1): 24-27.
29
Fang L, He J, Xia J, et al. Resistance to epithelial growth factor receptor tyrosine kinase inhibitors in a patient with transformation from lung adenocarcinoma to small cell lung cancer: A case report[J]. Oncol Lett, 2017, 14(1): 593-598.
30
Kato Y, Tanaka Y, Hino M, et al. ProGRP as early predictive marker of non-small-cell lung cancer to small-cell lung cancer transformation after EGFR-TKI treatment[J]. Respir Med Case Rep, 2019, 27: 100837.
31
Levin PA, Mayer M, Hoskin S, et al. Histologic transformation from adenocarcinoma to squamous cell carcinoma as a mechanism of resistance to EGFR inhibition[J]. J Thorac Oncol, 2015, 10(9): e86-e88.
32
Xie T, Li Y, Xing P. Mechanism of histologic transformation of drive gene positive lung adenocarcinoma in targeted therapy and treatment strategy[J]. Chin J Lung Cancer, 2020, 23(8): 701-709.
[1] 郏亚平, 曾书娥. 含鳞状细胞癌成分的乳腺化生性癌的超声与病理特征分析[J]. 中华医学超声杂志(电子版), 2023, 20(08): 844-848.
[2] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[3] 欧阳剑锋, 李炳权, 叶永恒, 胡少宇, 向阳. 关节镜联合富血小板血浆治疗粘连性肩周炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 765-772.
[4] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[5] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[6] 魏小勇. 原发性肝癌转化治疗焦点问题探讨[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 602-607.
[7] 杜锡林, 谭凯, 贺小军, 白亮亮, 赵瑶瑶. 肝细胞癌转化治疗方式[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 597-601.
[8] 李斌奎. 不可切除肝内胆管细胞癌的转化治疗[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 511-516.
[9] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[10] 何传超, 肖治宇. 晚期肝癌综合治疗模式与策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 486-489.
[11] 黄怡诚, 陆晨, 孙司正, 喻春钊. 肝特异性转录因子FOXA2在人结直肠癌肝转移阶梯模型中的表达变化及其意义[J]. 中华结直肠疾病电子杂志, 2023, 12(05): 396-403.
[12] 刘玉星, 刘晨鸣, 杜金林. 初始不可切除的结直肠癌肝转移转化治疗的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 337-341.
[13] 刘一, 文旖旎, 吴映辉. 过敏性紫癜患儿外周血辅助性T细胞、调节性T细胞细胞因子与肾损害的相关性分析[J]. 中华肾病研究电子杂志, 2023, 12(05): 271-275.
[14] 孙秀丽, 刘振宇, 唐婷婷, 张景尚, 李猛, 毛迎燕, 万修华. 关注后发性白内障的发病机制及防控措施[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 193-198.
[15] 李昕, 李永凯, 江树青, 夏来百提姑·赛买提, 杨建中. 急性缺血性脑卒中静脉溶栓后出血转化相关危险因素分析[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 331-336.
阅读次数
全文


摘要