切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2024, Vol. 17 ›› Issue (02) : 320 -323. doi: 10.3877/cma.j.issn.1674-6902.2024.02.034

综述

宏基因组高通量测序在肺部感染中的应用
罗懿1, 王洪武1,()   
  1. 1. 100700 北京,北京中医药大学东直门医院呼吸病中心
  • 收稿日期:2023-07-21 出版日期:2024-04-25
  • 通信作者: 王洪武
  • 基金资助:
    北京市通州区科技计划项目(KJ2022CX047)

Application of metagenomic next-generation sequencing in pulmonary infection

Yi Luo, Hongwu Wang()   

  • Received:2023-07-21 Published:2024-04-25
  • Corresponding author: Hongwu Wang
引用本文:

罗懿, 王洪武. 宏基因组高通量测序在肺部感染中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 320-323.

Yi Luo, Hongwu Wang. Application of metagenomic next-generation sequencing in pulmonary infection[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2024, 17(02): 320-323.

肺部感染可由细菌、病毒、真菌等多种病原体引起,是呼吸系统最常见的疾病,也是全球范围内重要的死亡原因之一[1]。由于传统病原学检测存在一定局限,临床约有30%~60的肺部感染患者无法明确病原学诊断,导致病情延误或抗生素滥用,快速准确的鉴定病原体是临床诊疗的关键[2]。宏基因组高通量测序(metagenomics next-generation sequencingm, NGS),又被称为宏基因组第二代测序,能够直接对临床样本中的所有微生物和宿主核酸进行高通量测序,通过与数据库进行比对分析鉴定样本中的病原微生物[3]。mNGS技术作为一种快速、无偏倚、广谱的检测技术,能够弥补传统检测的部分不足,已经开始逐渐应用于肺部感染的临床诊断[4]。在此对于mNGS技术目前在肺部感染领域的临床应用做一综述。

1
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of disease study 2019[J]. Lancet, 2020, 396(10258): 1204-1222.
2
Ewig S, Torres A, Angeles M, et al. Factors associated with unknown aetiology in patients with community-acquired pneumonia[J]. Eur Respir J, 2002, 20(5): 1254-1262.
3
中国药师协会,中华医学会细菌感染与耐药防治分会,国家卫生健康委临床抗微生物药物敏感性折点研究和标准制定专家委员会. 宏基因组高通量测序技术应用于感染性疾病病原检测中国专家共识[J]. 中华检验医学杂志2021, 44(2): 107-120.
4
Chiu CY, Miller SA. Clinical metagenomics[J]. Nat Rev Genet, 2019, 20(6): 341-355.
5
卢健聪,谢燕君,叶 凯,等. mNGS技术在免疫缺陷重症肺炎患者病原体诊断中的意义[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(3): 360-362.
6
Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome[J]. Science, 2003, 300(5624): 1394-1399.
7
Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer[J]. N Engl J Med, 2009, 360(8): 790-800.
8
Palmer C, Bik EM, Eisen MB, et al. Rapid quantitative profiling of complex microbial populations[J]. Nucleic Acids Res, 2006, 34(1): e5.
9
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing:from basic research to diagnostics[J]. Clinical chemistry, 2009, 55(4): 641-658.
10
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25): 2408-2417.
11
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733.
12
Kevadiya BD, Machhi J, Herskovitz J, et al. Diagnostics for SARS-CoV-2 infections[J]. Nat Mater, 2021, 20(5): 593-605.
13
Yin Q, Li Y, Pan H, et al. Atypical pneumonia caused by Chlamydia psittaci during the COVID-19 pandemic[J]. In J Of Infect Dis, 2022, 122: 622-627.
14
Tang J, Tan W, Luo L, et al. Application of metagenomic next-generation sequencing in the diagnosis of pneumonia caused by chlamydia psittaci[J]. Microbiol Spectr, 2022, 10(4): e0238421.
15
Chen X, Cao K, Wei Y, et al. Metagenomic next-generation sequencing in the diagnosis of severe pneumonias caused by Chlamydia psittaci[J]. Infection, 2020, 48(4): 535-542.
16
Xie D, Xu W, You J, et al. Clinical descriptive analysis of severe Pneumocystis jirovecii pneumonia in renal transplantation recipients[J]. Bioengineered, 2021, 12(1): 1264-1272.
17
Liu L, Yuan M, Shi Y, et al. Clinical performance of BAL metagenomic next-generation sequence and serum (1,3)-β-d-glucan for differential diagnosis of pneumocystis jirovecii pneumonia and pneumocystis jirovecii colonisation[J]. Front Cell And Infect Microbiol, 2021, 11: 784236.
18
Yue R, Wu X, Li T, et al. Early detection of legionella pneumophila and aspergillus by mNGS in a critically Ⅲ patient With legionella pneumonia after extracorporeal membrane oxygenation treatment: Case report and literature review[J]. Front Med, 2021, 8: 686512.
19
Zhang Y, Wang W, Zhang Y, et al. Pulmonary cryptococcosis diagnosed by metagenomic next-generation sequencing in a young patient with normal immune function: A case report[J]. Front Public Health, 2022, 10: 942282.
20
chen s, kang y, li d, et al. Diagnostic performance of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in patients with pulmonary infections: Systematic review and meta-analysis[J]. Int J Infect Dis, 2022, 122: 867-873.
21
Shi CL, Han P, Tang PJ, et al. Clinical metagenomic sequencing for diagnosis of pulmonary tuberculosis[J]. J Infect, 2020, 81(4): 567-574.
22
Fang X, Mei Q, Fan X, et al. Diagnostic value of metagenomic next-generation sequencing for the detection of pathogens in bronchoalveolar lavage fluid in ventilator-associated pneumonia patients[J]. Front Microbiol, 2020, 11: 599756.
23
Liang M, Fan Y, Zhang D, et al. Metagenomic next-generation sequencing for accurate diagnosis and management of lower respiratory tract infections[J]. Int J Infect Dis, 2022, 122: 921-929.
24
Miao Q, Ma Y, Wang Q, et al. Microbiological diagnostic performance of metagenomic next-generation sequencing when applied to clinical practice[J]. Clin Infect Dis, 2018, 67(suppl_2): S231-S240.
25
Gu W, Miller S, Chiu CY. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev Pathol, 2019, 14: 319-338.
26
Zhao N, Cao J, Xu J, et al. Targeting RNA with next-and third-generation sequencing improves pathogen identification in clinical samples[J]. Adv Sci (Weinh), 2021, 8(23): e2102593.
27
Zhang J, Gao L, Zhu C, et al. Clinical value of metagenomic next-generation sequencing by Illumina and Nanopore for the detection of pathogens in bronchoalveolar lavage fluid in suspected community-acquired pneumonia patients[J]. Front Cell Infect Microbiol, 2022, 12: 1021320.
28
Zhan Y, Xu T, He F, et al. Clinical evaluation of a metagenomics-based assay for pneumonia management[J]. Front Microbiol, 2021, 12: 751073.
29
Li N, Ma X, Zhou J, et al. Clinical application of metagenomic next-generation sequencing technology in the diagnosis and treatment of pulmonary infection pathogens: A prospective single-center study of 138 patients[J]. J Clin Lab Anal, 2022, 36(7): e24498.
30
Ju CR, Lian QY, Guan WJ, et al. Metagenomic next-generation sequencing for diagnosing infections in lung transplant recipients: A retrospective study[J]. Transpl Int, 2022, 35: 10265.
31
Wei P, Gao Y, Zhang J, et al. Diagnosis of lung squamous cell carcinoma based on metagenomic Next-Generation Sequencing[J]. BMC Pulm Med, 2022, 22(1): 108.
32
Langelier C, Kalantar KL, Moazed F, et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults[J]. Proc Natl Acad Sc U S A, 2018, 115(52): E12353-E12362.
33
Langelier C, Zinter MS, Kalantar K, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients[J]. Am J Respir Crit Care Med, 2018, 197(4): 524-528.
34
Guo Y, Li H, Chen H, et al. Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue[J]. E Bio Medicine, 2021, 73: 103639.
35
胡付品,郭 燕,朱德妹,等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志2022, 22(5): 521-530.
36
Ransom EM, Potter RF, Dantas G, et al. Genomic prediction of antimicrobial resistance: Ready or not, here it comes![J]. Clin Chem, 2020, 66(10): 1278-1289.
37
Wang K, Li P, Lin Y, et al. Metagenomic diagnosis for a culture-negative sample from a patient with severe pneumonia by nanopore and next-generation sequencing[J]. Front Cell Infect Microbiol, 2020, 10: 182.
38
Chen H, Bai X, Gao Y, et al. Profile of bacteria with ARGs among real-world samples from ICU admission patients with pulmonary infection revealed by metagenomic NGS[J]. Infect Drug Resist, 2021, 14: 4993-5004.
39
Serpa PH, Deng X, Abdelghany M, et al. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections[J]. Genome Med, 2022, 14(1): 74.
40
Charalampous T, Kay GL, Richardson H, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection[J]. Nat Biotechnol, 2019, 37(7): 783-792.
41
Diao Z, Han D, Zhang R, et al. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections[J]. J Adv Res, 2021, 38: 201-212.
42
Ditz B, Christenson S, Rossen J, et al. Sputum microbiome profiling in COPD: beyond singular pathogen detection[J]. Thorax, 2020, 75(4): 338-344.
43
Ramos-Sevillano E, Wade WG, Mann A, et al. The effect of influenza virus on the human oropharyngeal microbiome[J]. Clin Infect Dis, 2019, 68(12): 1993-2002.
44
Chen Y, Feng W, Ye K, et al. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary infectious pathogens from bronchoalveolar lavage samples[J]. Front Cell Infect Microbiol, 2021, 11: 541092.
45
Hong L, Chen Y, Ye L. Characteristics of the lung microbiota in lower respiratory tract infections with and without history of pneumonia[J]. Bioengineered, 2021, 12(2): 10480-10490.
46
Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66(5): 778-788.
47
Yan L, Sun W, Lu Z, et al. Metagenomic next-generation sequencing (mNGS) in cerebrospinal fluid for rapid diagnosis of Tuberculosis meningitis in HIV-negative population[J]. Int J Infect Dis, 2020, 96: 270-275.
48
Zhang Y, Lun CY, Tsui S KW. Metagenomics: A new way to illustrate the crosstalk between infectious diseases and host microbiome[J]. Int J Mol Sci, 2015, 16(11): 26263-26279.
49
Xie G, Zhao B, Wang X, et al. Exploring the clinical utility of metagenomic next-generation sequencing in the diagnosis of pulmonary infection[J]. Infect Dis And Ther, 2021, 10(3): 1419-1435.
50
Wu D, Wang W, Xun Q, et al. Metagenomic next-generation sequencing indicates more precise pathogens in patients with pulmonary infection: A retrospective study[J]. Front Cell Infect Microbiol, 2022, 12: 977591.
51
Jin X, Li J, Shao M, et al. Improving suspected pulmonary infection diagnosis by bronchoalveolar lavage fluid metagenomic next-generation sequencing: a multicenter retrospective study[J]. Microbiol Spectr, 2022, 10(4): e0247321.
52
Qian YY, Wang HY, Zhou Y, et al. Improving pulmonary infection diagnosis with metagenomic next generation sequencing[J]. Front Cell Infect Microbiol, 2021, 10: 567615.
53
Mitchell AB, Li CX, Oliver BGG, et al. High-resolution metatranscriptomic characterization of the pulmonary RNA virome after lung transplantation[J]. Transplantation, 2021, 105(12): 2546-2553.
54
Zhou X, Wu H, Ruan Q, et al. Clinical evaluation of diagnosis efficacy of active mycobacterium tuberculosis complex infection via metagenomic next-generation sequencing of direct clinical samples[J]. Front Cell Infect Microbiol, 2019, 9: 351.
55
Shi W, Zhu S. The application of metagenomic next-generation sequencing in detection of pathogen in bronchoalveolar lavage fluid and sputum samples of patients with pulmonary infection[J]. Comput Math Methods Med, 2021, 2021: 7238495.
56
Yang L, Song J, Wang Y, et al. Metagenomic next-generation sequencing for pulmonary fungal infection diagnosis: Lung biopsy versus bronchoalveolar lavage fluid[J]. Infect Drug Resist, 2021, 14: 4333-4359.
[1] 陈经欣, 李梅, 陈洁雅. 肺结节胸腔镜术后肺部感染危险因素分析[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(04): 238-243.
[2] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[3] 徐辉, 杨勇琼, 刘健, 许剑, 江佳莲, 邓正波. s-ChE、PCT、CRP在肺结核中的表达及继发肺部感染的预测意义[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 292-295.
[4] 郭小琦, 张璞, 李小军, 余明, 王博. 口服醋酸泼尼松联合局部注射曲安奈德对食管早癌ESD术后食管狭窄及肺部感染的预防疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 288-291.
[5] 高瑞, 康迪斯, 秦蘅, 胡月明, 初同伟, 代丽. 加速康复管理改善膝关节置换术后肺部感染并发症和疗效的Meta分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 234-237.
[6] 刘凌卉, 程铃, 张小雪, 肖敏. 环状RNA与肺部感染的研究进展[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 140-143.
[7] 陈慧, 范婷, 李春花, 黄其密, 陈晓英, 翁启明, 彭茹, 唐思, 何佳霖, 陈庆, 王旖旎, 汤玲一. 重症急性胰腺炎并发肺部感染临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 856-859.
[8] 张怡, 郑少琴, 杨莎. 肺部感染为主要表现艾滋病合并马尔尼菲篮状菌病一例[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 903-905.
[9] 闫晶, 刘磊, 王永红. AECOPD肺部感染控制窗的影响因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(05): 715-717.
[10] 刘玲, 肖颖, 王蓉. 严重创伤并发肺部感染死亡病例分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 581-583.
[11] 王庆, 张红联, 吴志勇. COPD合并多重耐药菌肺部感染预后危险因素分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 557-559.
[12] 周杉京, 诸葛金科, 王芳芳. 补肺活血胶囊对COPD患者cCor、ALD、Ang-Ⅱ的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 517-519.
[13] 张晓娟, 邓祥瑞, 陈睿, 钟文. AECOPD伴肺部感染吸入三联疗效与EOS相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 364-366.
[14] 张沥, 宋俊华, 何皓, 杨雪瑶, 周康. 血清D-D、PAI-1、sICAM-1水平与糖尿病合并肺部感染病情严重程度及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 203-205.
[15] 华美芳, 陈莉, 张峰林, 刘忠. 出血性脑卒中术后并发肺部感染的影响因素分析[J]. 中华脑血管病杂志(电子版), 2024, 18(02): 110-114.
阅读次数
全文


摘要