切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2021, Vol. 14 ›› Issue (02) : 231 -233. doi: 10.3877/cma.j.issn.1674-6902.2021.02.023

短篇论著

低剂量CT空气潴留指标用于支气管哮喘患者病情分析
于洪福1, 尹超1, 姜云飞1   
  1. 1. 236000,安徽,阜阳市妇女儿童医院CT、MRI室
  • 收稿日期:2020-11-15 出版日期:2021-04-25

Analysis of patients with bronchial asthma by low­dose CT air retention index

Hongfu Yu1, Chao Yin1, Yunfei Jiang1   

  • Received:2020-11-15 Published:2021-04-25
引用本文:

于洪福, 尹超, 姜云飞. 低剂量CT空气潴留指标用于支气管哮喘患者病情分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(02): 231-233.

Hongfu Yu, Chao Yin, Yunfei Jiang. Analysis of patients with bronchial asthma by low­dose CT air retention index[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(02): 231-233.

表1 健康组及患者临床资料比较(±s)
图1 低剂量CT空气潴留与哮喘的相关性;注:A:呼气相MLD与支气管哮喘患者病情分度呈正相关;B:MLD E/I与支气管哮喘患者病情分度无显著相关性;C:VI-850E-I与支气管哮喘患者病情分度呈负相关;D:VI-850/-950E-I与支气管哮喘患者病情分度呈负相关
1
McCracken JL, Veeranki SP, Ameredes BT, et al. Diagnosis and management of asthma in adults: a review[J]. JAMA, 2017, 318(3): 279-290.
2
Padem N, Saltoun C. Classification of asthma[J]. allergy asthma Proc, 2019, 40(6): 385-388.
3
Ivanova ZI, Ivanov YY. Pharmacoeconomics of bronchial asthma[J]. Folia Med (Plovdiv), 2019, 61(2): 163-171.
4
Michalik M, Wójcik-Pszczoa K, Paw M, et al. Fibroblast-to-myofibroblast transition in bronchial asthma[J]. Cell Mol Life Sci, 2018, 75(21): 3943-3961.
5
Chen H, Zeng QS, Zhang M, et al. Quantitative low-dose computed tomography of the lung parenchyma and airways for the differentiation between chronic obstructive pulmonary disease and asthma patients[J]. Respiration, 2017, 94(4): 366-374.
6
Mueller JL, Muller P, Mellenthin M, et al. Estimating regions of air trapping from electrical impedance tomography data[J]. Physiol Meas, 2018, 39(5): 05NT01.
7
Sorkness RL, Kienert C, O′Brien MJ, et al. Compressive air trapping in asthma: effects of age, sex, and severity[J]. J Appl Physiol (1985), 2019, 126(5): 1265-1271.
8
Roach DJ, Ruangnapa K, Fleck RJ, et al. Structural lung abnormalities on computed tomography correlate with asthma inflammation in bronchoscopic alveolar lavage fluid[J]. J Asthma, 2020, 57(9): 968-979.
9
中华医学会,中华医学会杂志社,中华医学会全科医学分会,等. 支气管哮喘基层诊疗指南(实践版·2018)[J]. 中华全科医师杂志,2018, 17(10): 763-769.
10
Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma[J]. Immunity, 2019, 50(4): 975-991.
11
Abbas AS, Ghozy S, Minh LHN, et al. Honey in Bronchial Asthma: From Folk Tales to Scientific Facts[J]. J Med Food, 2019, 22(6): 543-550.
12
Endre L. A testedzés és az asztma kapcsolata [Physical exercise and bronchial asthma][J]. Orv Hetil, 2016, 157(26): 1019-1027.
13
Almeida-Oliveira AR, Aquino-Junior J, Abbasi A, et al. Effects of aerobic exercise on molecular aspects of asthma: involvement of SOCS-JAK-STAT[J]. Exerc Immunol Rev, 2019, 25(1): 50-62.
14
Kuwabara Y, Kobayashi T, D′Alessandro-Gabazza CN, et al. Role of matrix metalloproteinase-2 in eosinophil-mediated airway remodeling[J]. Front Immunol, 2018, 9(1): 2163.
15
Li K, Gao Y, Pan Z, et al. Influence of emphysema and air trapping heterogeneity on pulmonary function in patients with COPD[J]. Int J Chron Obstruct Pulmon Dis, 2019, 14(1): 2863-2872.
16
Heuvelmans MA, Vonder M, Rook M, et al. Screening for early lung cancer, chronic obstructive pulmonary disease, and cardiovascular disease (the Big-3) using low-dose chest computed tomography: current evidence and technical considerations[J]. J Thorac Imaging, 2019, 34(3): 160-169.
17
Moen TR, Chen B, Holmes DR 3rd, et al. Low-dose CT image and projection dataset[J]. Med Phys, 2021, 48(2): 902-911.
18
Zhang L, Li Z, Meng J, et al. Airway quantification using adaptive statistical iterative reconstruction-V on wide-detector low-dose CT: a validation study on lung specimen[J]. Jpn J Radiol, 2019, 37(5): 390-398.
19
Ferrari CR, Cooley J, Mujahid N, et al. Horses with pasture asthma have airway remodeling that is characteristic of human asthma[J]. Vet Pathol, 2018, 55(1): 144-158.
20
Liu J, Cao Z, Zou S, et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China[J]. Sci Total Environ, 2018, 616-617: 417-426.
21
David MMC, Gomes ELFD, Mello MC, et al. Noninvasive ventilation and respiratory physical therapy reduce exercise-induced bronchospasm and pulmonary inflammation in children with asthma: randomized clinical trial[J]. Ther Adv Respir Dis, 2018, 12(1): 17-23.
22
Zhan L, Shao Z, Jin H, et al. Study on negative expiratory pressure technique in children with bronchial asthma[J]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue, 2019, 31(1): 87-90.
23
Duruturk N, Acar M, Dogrul MI. Effect of Inspiratory muscle training in the management of patients with asthma: A RANDOMIZED CONTROLLED TRIAL[J]. J Cardiopulm Rehabil Prev, 2018, 38(3): 198-203.
24
Fuso L, Macis G, Condoluci C, et al. Impulse oscillometry and nitrogen washout test in the assessment of small airway dysfunction in asthma: Correlation with quantitative computed tomography[J]. J Asthma, 2019 Mar, 56(3): 323-331.
25
Drake MG, Lebold KM, Roth-Carter QR, et al. Eosinophil and airway nerve interactions in asthma[J]. J Leukoc Biol, 2018, 104(1): 61-67.
26
Vuolo F, Abreu SC, Michels M, et al. Cannabidiol reduces airway inflammation and fibrosis in experimental allergic asthma[J]. Eur J Pharmacol, 2019, 843: 251-259.
27
Bush A. Management of asthma in children[J]. Minerva Pediatr, 2018, 70(5): 444-457.
28
Ritz T, Kroll JL, Patel SV, et al. Central nervous system signatures of affect in asthma: associations with emotion-induced bronchoconstriction, airway inflammation, and asthma control[J]. J Appl Physiol (1985), 2019, 126(6): 1725-1736.
29
Sachdeva K, Do DC, Zhang Y, et al. Environmental exposures and asthma development: autophagy, mitophagy, and cellular senescence[J]. Front Immunol, 2019, 10(1): 2787.
30
Azaldegi G, Korta J, Sardón O, et al. Small airway dysfunction in children with controlled asthma[J]. Arch Bronconeumol, 2019, 55(4): 208-213.
[1] 陈秀山, 张婷婷, 杨栓盈, 高娜. 低剂量CT扫描在肺部同轴穿刺活检中的临床应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 587-588.
[2] 路东明, 陈建华, 艾月琴. 布地格福吸入气雾剂治疗支气管哮喘的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 361-363.
[3] 谭玲芳, 周克兵. 基于生物信息学整合鉴定与支气管哮喘相关的潜在诊断生物标志物[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 329-334.
[4] 刘汶睿, 高丽娜, 于书娴, 周建刚. 支气管哮喘患者血清IL-27与IFN-γ及肺功能相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 224-226.
[5] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[6] 李德莲, 杨鹏, 王琳. FeNO联合总IgE、CXCL13检测对儿童支气管炎继发哮喘的意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(06): 838-840.
[7] 张志华, 肖晓晨, 梅少奇. 维生素D3辅助治疗哮喘合并呼吸道感染对气道重塑及免疫功能影响[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 355-357.
[8] 张超, 岳小哲. EOS、总IgE与儿童哮喘严重程度和肺功能的相关性[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 183-186.
[9] 李江华, 李力, 何勇. 呼出气一氧化氮的研究进展[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 119-122.
[10] 谢心怡, 胡宇翔, 席凡捷. 普仑司特联合丙酸氟替卡松治疗小儿哮喘的临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 100-102.
[11] 尹莉莉, 李伟, 殷爱云, 张永燕. 孟鲁司特钠联合细菌溶解产物对哮喘患儿IL-33、sST2受体、EOS、ECP的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 803-805.
[12] 韩林华, 王婧, 周翔. 定喘汤穴位贴敷对哮喘急性发作EOS、总IgE及肺功能的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 647-649.
[13] 罗妍妍, 陈青. 益生菌辅治小儿哮喘及对S100β蛋白、TLR4与炎性免疫因子的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 608-610.
[14] 蔡辉, 胡航, 曹亚. 中性粒细胞胞外诱捕网水平联合肺功能对哮喘急性发作预测意义[J]. 中华肺部疾病杂志(电子版), 2021, 14(05): 599-601.
[15] 顾艳利, 宋勇, 张方. 姜黄素在肺部炎症性疾病中的免疫调节作用[J]. 中华肺部疾病杂志(电子版), 2021, 14(04): 539-542.
阅读次数
全文


摘要