切换至 "中华医学电子期刊资源库"

中华肺部疾病杂志(电子版) ›› 2022, Vol. 15 ›› Issue (04) : 462 -467. doi: 10.3877/cma.j.issn.1674-6902.2022.04.002

论著

基于转录因子的肺癌预后模型构建及临床意义
何晓梅1, 王兴敏1, 熊浚智1, 陈荣荣1, 闵迁1, 张克斌1,(), 李园园1,()   
  1. 1. 400037 重庆,陆军军医大学第二附属医院临床医学研究中心
  • 收稿日期:2022-03-17 出版日期:2022-08-25
  • 通信作者: 张克斌, 李园园
  • 基金资助:
    国家自然科学基金资助项目(31872634)

Construction of prognostic model of lung cancer based on transcription factors and its clinical significance

Xiaomei He1, Xingmin Wang1, Junzhi Xiong1, Rongrong Chen1, Qian Min1, Kebin Zhang1,(), Yuanyuan Li1,()   

  1. 1. Clinical Medical Research Center, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
  • Received:2022-03-17 Published:2022-08-25
  • Corresponding author: Kebin Zhang, Yuanyuan Li
引用本文:

何晓梅, 王兴敏, 熊浚智, 陈荣荣, 闵迁, 张克斌, 李园园. 基于转录因子的肺癌预后模型构建及临床意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(04): 462-467.

Xiaomei He, Xingmin Wang, Junzhi Xiong, Rongrong Chen, Qian Min, Kebin Zhang, Yuanyuan Li. Construction of prognostic model of lung cancer based on transcription factors and its clinical significance[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2022, 15(04): 462-467.

目的

分析转录因子(transcription factors, TFs)在肺腺癌(lung adenocarcinoma, LUAD)中的表达及与预后的关系,寻找潜在干预靶点。

方法

利用生物信息学方法挖掘癌症基因组图谱(The Cancer Genome Atlas Program, TCGA)数据库中LUAD组织转录组和临床数据,利用R语言软件对肺癌及癌旁组织中的TFs相关基因(transcription factors-related genes, TFGs)进行表达差异分析,筛选出肺癌组织中差异表达的TFGs,进行GO功能和KEGG通路富集分析。通过COX回归分析筛选关键TFGs,建立风险评分模型并对其预测能力进行评价。

结果

与癌旁组织比较,LUAD组织中有391个TFGs表达异常。TFGs主要涉及胚胎发育、转录调控及干细胞多能行调节等生物学过程和信号通路。单因素COX回归分析显示11个TFs显著影响LUAD预后,逐步多因素COX回归分析筛选出其中5个TFGs (IRX4、ID3、CDX2、E2F7、NPAS2)作为肺癌预后的危险因子用于构建风险评分模型。生存分析显示,低风险组总生存时间显著长于高风险组。风险评分可作为危险因素预测LUAD预后(风险比为1.906,P<0.01),而患者年龄、性别、肿瘤分期与预后无相关性(P>0.05)。

结论

LUAD中多个TFs基因存在异常表达,基于5个TFGs成功构建了风险评分模型,可有效预测LUAD预后,为临床诊疗提供参考。

Objective

To investigated the relationship between aberrant expression of transcription factor genes (TFGs) and tumor prognosis in lung adenocarcinoma (LUAD), and to explore potential tumor transcriptional therapeutic targets.

Methods

Bioinformatics was used to mine the transcriptome and clinical data of lung adenocarcinoma (LUAD) in the Cancer Genome Atlas program (TCGA) database. R language software was adopted to screen the differentially expressed TFGs between LUAD and paracancerous tissues. Then, GO and KEGG enrichment analyses were performed. COX regression was applied to construct a risk score model to predict the prognosis of LUAD patients.

Results

391 TFGs were differentially expressed in LUAD tissues. These TFGs are mainly involved in biological processes and signal pathways such as embryonic development, transcriptional regulation and pluripotent regulation of stem cells. Univariate COX regression analysis showed that 11 TFGs were associated with prognosis. Five TFGs (IRX4, ID3, CDX2, E2F7, NPAS2) were further selected via stepwise multivariate COX regression analysis to construct the risk score model. Survival analysis revealed that the overall survival time of low-risk group was significantly longer than that of high-risk group. Risk score could be used as a risk factor to predict the prognosis of LUAD (hazard ratio=1.906, P<0.01), but there was no correlation between age, gender and tumor stage and prognosis (P>0.05).

Conclusion

Lots of transcription factor genes in LUAD have abnormal expression, which is closely concern to the prognosis of patients. The risk score model based on the 5-TFGs could effectively predict the LUAD patients prognosis and provide a new reference for clinical diagnosis and treatment of lung cancer.

图1 TFGs在LUAD与癌旁组织中的差异表达;注:A:所有mRNA表达谱中|log2 fold change|≥1且P<0.5的391个TFs在各个样本中的表达情况,以热图展示;B: TFGs表达分为上调、下调和没有显著差异,分别用蓝色、红色和灰色以火山图展示
图2 391个差异表达转录因子基因GO和KEGG富集分析结果;注:A: GO富集分析的气泡图,391个差异TFGs与胚胎发育、转录调节等有密切联系;B: KEGG通路分析的圈图,391个差异TFGs与癌症转录紊乱、干细胞多能性调节等通路相关
图3 COX回归分析筛选预后相关TFGs森林图;注:A:单因素COX回归分析筛选到11个与LUAD预后相关的TFGs(P<0.001);B:逐步多因素COX回归分析筛选到5个与LUAD预后相关的TFGs
图4 风险评分模型的建立与评价;注:A:所有LUAD患者基于风险评分的曲线图,从左到右患者风险评分依次升高,黑色虚线将患者分为低、高风险两组;B:随访终点所有患者生存状态,红色、绿色分别表示死亡和存活;C:低、高风险患者中风险TFGs的表达热图,绿色、红色分别表示低表达和高表达;D:低、高风险患者KM曲线;E:风险评分模型对患者1、3、5年生存预测的ROC曲线,AUC值越高代表预测的准确性越好
图5 患者临床参数COX回归分析的森林图;注:A:单因素COX回归分析中,肿瘤stage、TN分期及风险评分均与LUAD患者OS显著相关:B:多因素COX回归分析中,仅有T分期和风险评分与LUAD患者OS显著相关,P分别为0.005和0.001,风险比分别为1.106和1.906
1
钱桂生. 肺癌不同病理类型发病率的变化情况及其原因[J/CD]. 中华肺部疾病杂志(电子版), 2011, 4(1): 1-5.
2
Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554.
3
Siegel RL, Miller KD. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
4
陈国标,杜 巍,周建平,等. 肺癌病例分布及病理特征趋势分析[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 590-592.
5
郑云威,黄国定,卢宏全. 阿法替尼和顺铂分别联合培美曲塞治疗晚期非小细胞肺癌的疗效分析[J/CD]. 中华肺部疾病杂志(电子版), 2020, 13(4): 470-474.
6
李 峥,赵 猛,葛 鹏,等. 过表达LNCRNA 00593调控p53通路在非小细胞肺癌顺铂耐药中的作用机制. 中华肺部疾病杂志(电子版), 2020, 13(6): 724-730.
7
陈克能. 从第八版UICC/AJCC的TNM分期看Ⅳ期肺癌的异质性 [J/CD]. 中华胸部外科电子杂志2016, 3(3): 134-137.
8
Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors[J]. Cell, 2018, 172(4): 650-665.
9
Pratap J, Javed A, Languino LR, et al. The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion[J]. Mol Cell Biol, 2005, 25(19): 8581-8591.
10
Matkar S, Sharma P, Gao S, et al. An epigenetic pathway regulates sensitivity of breast cancer cells to HER2 inhibition via FOXO/c-Myc Axis[J]. Cancer Cell, 2015, 28(4): 472-485.
11
Hirade T, Abe M, Onishi C, et al. Internal tandem duplication of FLT3 deregulates proliferation and differentiation and confers resistance to the FLT3 inhibitor AC220 by Up-regulating RUNX1 expression in hematopoietic cells[J]. Int J Hematol, 2016, 103(1): 95-106.
12
Cerezo M, Guemiri R, Druillennec S, et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma[J]. Nat Med, 2018, 24(12): 1877-1886.
13
Sławek S, Szmyt K, Fularz M, et al. Pluripotency transcription factors in lung cancer-a review[J]. Tumour Biol, 2016, 37(4): 4241-4249.
14
Bushweller JH. Targeting transcription factors in cancer-from undruggable to reality[J]. Nat Rev Cancer, 2019, 19(11): 611-624.
15
Liu C, Zhang YH, Huang T, et al. Identification of transcription factors that may reprogram lung adenocarcinoma[J]. Artif Intell Med, 2017, 83: 52-57.
16
Maiuthed A, Prakhongcheep O, Chanvorachote P. Microarray-based analysis of genes, transcription factors, and epigenetic modifications in lung cancer exposed to nitric oxide[J]. Cancer Genomics Proteomics, 2020, 17(4): 401-415.
17
陈国萍,朱晓莉,朱兴龙. 血清Sox2抗体,p53抗体联合检测对肺小结节良恶性的鉴别诊断[J/CD]. 中华肺部疾病杂志(电子版), 2021, 14(5): 630-632.
18
Chen YS, Aubee J, Divito KA, et al. Id3 induces an Elk-1-caspase-8-dependent apoptotic pathway in squamous carcinoma cells[J]. Cancer Med, 2015, 4(6): 914-924.
19
Li XJ, Zhu CD, Yu W, et al. Overexpression of Id3 induces apoptosis of A549 human lung adenocarcinoma cells[J]. Cell Prolif, 2012, 45(1): 1-8.
20
Chen FF, Liu Y, Wang F, et al. Effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity[J]. Cancer Gene Therapy, 2015, 22(9): 431-437.
21
Chen Fang Fang, Lv Xing, Zhao Qin Fei, et al. Inhibitor of DNA binding 3 reverses cisplatin resistance in human lung adenocarcinoma cells by regulating the PI3K/Akt pathway[J]. Oncol Lett, 2018, 16(2): 1634-1640.
22
Boudreau F, Rings EH, Van Wering HM, et al. Hepatocyte nuclear factor-1 alpha, GATA-4, and caudal related homeodomain protein Cdx2 interact functionally to modulate intestinal gene transcription. Implication for the developmental regulation of the sucrase-isomaltase gene[J]. J Biol Chem, 2002, 277(35): 31909-31917.
23
Bonhomme C, Duluc I, Martin E, et al. The Cdx2 homeobox gene has a tumour suppressor function in the distal colon in addition to a homeotic role during gut development[J]. Gut, 2003, 52(10): 1465-1471.
24
Guo RJ, Funakoshi S, Lee HH, et al. The intestine-specific transcription factor Cdx2 inhibits beta-catenin/TCF transcriptional activity by disrupting the beta-catenin-TCF protein complex[J]. Carcinogenesis, 2010, 31(2): 159-166.
25
Grimminger P, Ling FC, Neiss S, et al. The role of the homeobox genes BFT and CDX2 in the pathogenesis of non-small cell lung cancer[J]. Anticancer Res, 2009, 29(4): 1281-1286.
26
Sha Z, Hao S, Wei Y, et al. Transcription Factor CDX2 Upregulates Proto-oncogenic miR-744 via Promoter Activation Mechanism in Non-small-cell Lung Cancer[J]. Annals Translat Med, 2020, 9(20): 1538.
27
Reimer D, Sadr S, Wiedemair A, et al. Clinical relevance of E2F family members in ovarian cancer-an evaluation in a training set of 77 patients[J]. Clin Cancer Res, 2007, 13(1): 144-151.
28
Yin W, Wang B, Ding M, et al. Elevated E2F7 expression predicts poor prognosis in human patients with gliomas[J]. J Clin Neurosci, 2016, 33: 187-193.
29
Yuan Y, Zhou X, Kang Y, et al. Circ-CCS is identified as a cancer-promoting circRNA in lung cancer partly by regulating the miR-383/E2F7 axis[J]. Life Sci, 2021, 267: 118955.
30
Qiu M, Xia W, Chen R, et al. The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma[J]. Cancer Res, 2018, 78(11): 2839-2851.
31
Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(10): 1257-1265.
32
Qiu MJ, Liu LP, Jin S, et al. Research on circadian clock genes in common abdominal malignant tumors[J]. Chronobiol Int, 2019, 36(7): 906-918.
33
Iyyanki T, Zhang B, Wang Q, et al. Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer[J]. Genome Biol, 2021, 22(1): 105.
34
Bruneau BG, Bao ZZ, Tanaka M, et al. Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand[J]. Dev Biol, 2000, 217(2): 266-277.
35
Bao ZZ, Bruneau BG, Seidman JG, et al. Regulation of chamber-specific gene expression in the developing heart by Irx4[J]. Science, 1999, 283(5405): 1161-1164.
36
Cheng Z, Wang J, Su D, et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease[J]. Hum Genet, 2011, 130(5): 657-662.
37
Corrêa S, Panis C, Binato R, et al. Identifying potential markers in Breast Cancer subtypes using plasma label-free proteomics[J]. J Proteomics, 2017, 151: 33-42.
38
Ding L, Su Y, Fassl A, et al. Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ[J]. Nat Commun, 2019, 10(1): 4182.
[1] 刘政宏, 王凤力, 吉亚君, 高佳. 胃癌中ELK3蛋白的表达与临床病理特征和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 155-159.
[2] 张璇, 高杨, 房雅君, 姚艳玲. 保护性机械通气在肺癌胸腔镜肺段切除术中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 563-567.
[3] 陶银花, 张红杰, 王亚岚, 陈莲, 张珺. 间歇式气压治疗预防肺癌化疗下肢深静脉血栓的临床分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 605-608.
[4] 任甜甜, 张玉慧, 祁玲霞, 朱梅冬, 胡佳. 多学科疼痛管理对胸腔镜肺叶切除术后胸痛及应激反应的影响分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 630-633.
[5] 林建琴, 孔令敏, 陆银凤, 陈勇, 金凤, 叶磊, 陈方梅. PERMA模式对肺癌患者治疗获益感及生活质量的影响分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 634-638.
[6] 殷国青, 曾莉, 贺斌峰, 孙芬芬. Rab26负性调控Nrf2增强肺癌耐药细胞对奥希替尼的敏感性[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 349-355.
[7] 邓世君, 刘晓青, 刘权兴. 信息化管理在肺癌围手术期中的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 466-468.
[8] 吕欣谕, 李雯, 王娟侠, 邹维, 王艳, 雷杰. 围手术期肺康复训练在胸腔镜肺叶切除术中疗效分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 256-259.
[9] 庞红燕, 宫艳格, 王瑶杰, 孙海鹏, 张连勇. TTF-1与非小细胞肺癌铂类药物化疗相关性分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 303-306.
[10] 陈羽霞, 柏佩梅, 芦遥遥. 综合干预对肺癌化疗患者的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 307-309.
[11] 胡航, 陈婷婷, 孙健, 孙云浩, 仇丽敏. 三维重建技术在单操作孔胸腔镜肺段切除术的临床应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 310-312.
[12] 张剑, 卢从华, 李江华, 林采余, 吴迪, 王治国, 聂乃夫, 何勇, 李力. 根据转录组学分析奥希替尼获得性耐药机制的研究[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 195-200.
[13] 张蕊, 李敏, 饶建玲. 肺癌患者癌因性疲乏现状及影响因素分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 111-114.
[14] 朱斯悦, 张晓莹, 严玉茹, 陈绯. 介入支气管镜在肺部疾病诊断和治疗中的应用[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 148-151.
[15] 拉周措毛, 山春玲, 李国蓉, 华毛. 青海西宁地区IPF-LC的病理类型及临床特征分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(01): 25-29.
阅读次数
全文


摘要